Medimatrix: innovative pre-training of grayscale images for rheumatoid arthritis diagnosis revolutionises medical image classification

Goebel A, et al. The autoimmune aetiology of unexplained chronic pain. Autoimmun Rev. 2022;21:103015.

Article  Google Scholar 

Nakatsu K, Morita K, Yagi N, Kobashi S. Finger joint detection method in hand x-ray radiograph images using statistical shape model and support vector machine, 2020, pp. 1–5. IEEE.

Ainsworth RI, et al. Systems-biology analysis of rheumatoid arthritis fibroblast-like synoviocytes implicates cell line-specific transcription factor function. Nat Commun. 2022;13:6221.

Article  Google Scholar 

Xie Y, Richmond D. Pre-training on grayscale imagenet improves medical image classification; 2018.

Tschandl P, Rosendahl C, Kittler H. The ham10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. Sci Data. 2018;5:1–9.

Article  Google Scholar 

Ou Y, et al. A sub-pixel accurate quantification of joint space narrowing progression in rheumatoid arthritis. IEEE J Biomed Health Inform. 2022;27:53–64.

Article  Google Scholar 

Zhou Q, Huang Z, Ding M, Zhang X. Medical image classification using light-weight CNN with spiking cortical model based attention module. IEEE J Biomed Health Inform. 2023;27:1991–2002.

Article  Google Scholar 

Qu Z, Sun H. A secure information transmission protocol for healthcare cyber based on quantum image expansion and grover search algorithm. IEEE Trans Netw Sci Eng. 2022.

Mate GS, Kureshi AK, Singh BK. An efficient CNN for hand x-ray classification of rheumatoid arthritis. J Healthc Eng. 2021.

Rohrbach J, Reinhard T, Sick B, Dürr O. Bone erosion scoring for rheumatoid arthritis with deep convolutional neural networks. Comput Electr Eng. 2019;78:472–81.

Article  Google Scholar 

Tan W, et al. Segmentation of lung airways based on deep learning methods. IET Image Proc. 2022;16:1444–56.

Article  Google Scholar 

Ibtehaz N, Rahman MS. Multiresunet: rethinking the u-net architecture for multimodal biomedical image segmentation. Neural Netw. 2020;121:74–87.

Article  Google Scholar 

O’Neil LJ, et al. Proteomic approaches to defining remission and the risk of relapse in rheumatoid arthritis. Front Immunol. 2021;12:729681.

Article  Google Scholar 

Hu X, et al. Joint landmark and structure learning for automatic evaluation of developmental dysplasia of the hip. IEEE J Biomed Health Inform. 2021;26:345–58.

Article  Google Scholar 

Wu M, et al. A deep learning classification of metacarpophalangeal joints synovial proliferation in rheumatoid arthritis by ultrasound images. J Clin Ultrasound. 2022;50:296–301.

Article  Google Scholar 

Alarcón-Paredes A, et al. Computer-aided diagnosis based on hand thermal, RGB images, and grip force using artificial intelligence as screening tool for rheumatoid arthritis in women. Med Biol Eng Comput. 2021;59:287–300.

Article  Google Scholar 

Aizenberg E, et al. Automatic quantification of bone marrow edema on MRI of the wrist in patients with early arthritis: a feasibility study. Magn Reson Med. 2018;79:1127–34.

Article  Google Scholar 

Fukae J, et al. Convolutional neural network for classification of two-dimensional array images generated from clinical information may support diagnosis of rheumatoid arthritis. Sci Rep. 2020;10:1–7.

Article  Google Scholar 

Bardhan S, Bhowmik MK. 2-stage classification of knee joint thermograms for rheumatoid arthritis prediction in subclinical inflammation. Australasian Phys Eng Sci Med. 2019;42:259–77.

Article  Google Scholar 

Chocholova E, et al. Glycomics meets artificial intelligence-potential of glycan analysis for identification of seropositive and seronegative rheumatoid arthritis patients revealed. Clin Chim Acta. 2018;481:49–55.

Article  Google Scholar 

Heard BJ, et al. A computational method to differentiate normal individuals, osteoarthritis and rheumatoid arthritis patients using serum biomarkers. J R Soc Interface. 2014;11:20140428.

Article  Google Scholar 

Wyns B, et al. Prediction of diagnosis in patients with early arthritis using a combined Kohonen mapping and instance-based evaluation criterion. Artif Intell Med. 2004;31:45–55.

Article  Google Scholar 

Hirano T, et al. Development and validation of a deep-learning model for scoring of radiographic finger joint destruction in rheumatoid arthritis. Rheumatol Adv Pract. 2019;3:rkz047.

Article  Google Scholar 

Woo S, Park J, Lee, J-Y, Kweon IS. Cbam: convolutional block attention module, 2018; pp. 3–19.

Gornale S, Patravali P. Digital knee x-ray images. Mendeley Data 2020;1.

Chen T, Kornblith S, Norouzi M, Hinton G. A simple framework for contrastive learning of visual representations, pp. 1597–1607 (PMLR, 2020).

He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition, 2016; pp. 770–778.

He K, Fan H, Wu Y, Xie S, Girshick, R. Momentum contrast for unsupervised visual representation learning, 2020; pp. 9729–9738.

Cao Z, Yu H, Yang H. Sano A. Pirl: participant-invariant representation learning for healthcare using maximum mean discrepancy and triplet loss. arXiv preprint arXiv:2302.09126 2023.

Henaff O. Data-efficient image recognition with contrastive predictive coding, pp. 4182–4192 (PMLR, 2020).

Tian Y, Krishnan D, Isola P. Contrastive multiview coding. New York: Springer; 2020. p. 776–94.

Google Scholar 

Donahue J, Simonyan K. Large scale adversarial representation learning. Adv Neural Inf Process Syst 2019;32.

Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. Mobilenetv2: inverted residuals and linear bottlenecks. In: Proceedings of the IEEE conference on computer vision and pattern recognition 2018.

Chen P, Gao L, Shi X, Allen K, Yang L. Fully automatic knee osteoarthritis severity grading using deep neural networks with a novel ordinal loss. Comput Med Imaging Graph. 2019;75:84–92.

Article  Google Scholar 

Jie et al. Squeeze-and-excitation networks. IEEE Trans Pattern Anal Machine Intell 2019.

Tiulpin A, Thevenot J, Rahtu E, Lehenkari P., Saarakkala, S. Automatic knee osteoarthritis diagnosis from plain radiographs: a deep learning-based approach; 2017.

Tiulpin A, Saarakkala S. Automatic grading of individual knee osteoarthritis features in plain radiographs using deep convolutional neural networks. Diagnostics. 2020;10:932.

Article  Google Scholar 

Hu J, Shen L, Sun G. Squeeze-and-excitation networks, 2018; pp. 7132–7141.

留言 (0)

沒有登入
gif