Supervised graph contrastive learning for cancer subtype identification through multi-omics data integration

Janku F. Tumor heterogeneity in the clinic: is it a real problem? Ther Adv Med Oncol. 2014;6:43–51.

Article  PubMed  PubMed Central  Google Scholar 

Fisher R, Pusztai L, Swanton C. Cancer heterogeneity: implications for targeted therapeutics. Br J Cancer. 2013;108:479–85.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Peng W, Chen T, Liu H, Dai W, Yu N, Lan W. Improving drug response prediction based on two-space graph convolution. Comput Biol Med. 2023;158:106859.

Article  PubMed  Google Scholar 

Song J, Peng W, Wang F. An entropy-based method for identifying mutual exclusive driver genes in cancer. IEEE/ACM Trans Comput Biol Bioinform. 2019;17:758–68.

Article  PubMed  Google Scholar 

Curtis C, Shah SP, Chin S-F, Turashvili G, Rueda OM, Dunning MJ, Speed D, Lynch AG, Samarajiwa S, Yuan Y. The genomic and transcriptomic architecture of 2000 breast tumours reveals novel subgroups. Nature. 2012;486:346–52.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Parker JS, Mullins M, Cheang MC, Leung S, Voduc D, Vickery T, Davies S, Fauron C, He X, Hu Z. Supervised risk predictor of breast cancer based on intrinsic subtypes. J Clin Oncol. 2009;27:1160.

Article  PubMed  PubMed Central  Google Scholar 

Sørlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, Hastie T, Eisen MB, Van De Rijn M, Jeffrey SS. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci. 2001;98:10869–74.

Article  ADS  PubMed  PubMed Central  Google Scholar 

Bedard PL, Hansen AR, Ratain MJ, Siu LL. Tumour heterogeneity in the clinic. Nature. 2013;501:355–64.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Berger MF, Mardis ER. The emerging clinical relevance of genomics in cancer medicine, Nature reviews. Clin Oncol. 2018;15:353–65.

CAS  Google Scholar 

Kim D, Joung J-G, Sohn K-A, Shin H, Park YR, Ritchie MD, Kim JH. Knowledge boosting: a graph-based integration approach with multi-omics data and genomic knowledge for cancer clinical outcome prediction. J Am Med Inform Assoc. 2015;22:109–20.

Article  PubMed  Google Scholar 

Shen R, Olshen AB, Ladanyi M. Integrative clustering of multiple genomic data types using a joint latent variable model with application to breast and lung cancer subtype analysis. Bioinformatics. 2009;25:2906–12.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tini G, Marchetti L, Priami C, Scott-Boyer M-P. Multi-omics integration—a comparison of unsupervised clustering methodologies. Brief Bioinform. 2019;20:1269–79.

Article  CAS  PubMed  Google Scholar 

Song W, Wang W, Dai D-Q. Subtype-WESLR: identifying cancer subtype with weighted ensemble sparse latent representation of multi-view data. Br Bioinform. 2022;23:bbab398.

Article  Google Scholar 

Huang Z, Zhan X, Xiang S, Johnson TS, Helm B, Yu CY, Zhang J, Salama P, Rizkalla M, Han Z. SALMON: survival analysis learning with multi-omics neural networks on breast cancer. Front Genet. 2019;10:166.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xu J, Wu P, Chen Y, Meng Q, Dawood H, Dawood H. A hierarchical integration deep flexible neural forest framework for cancer subtype classification by integrating multi-omics data. BMC Bioinform. 2019;20:1–11.

Article  Google Scholar 

Lin Y, Zhang W, Cao H, Li G, Du W. Classifying breast cancer subtypes using deep neural networks based on multi-omics data. Genes. 2020;11:888.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang H, Chen R, Li D, Wang Z. Subtype-GAN: a deep learning approach for integrative cancer subtyping of multi-omics data. Bioinformatics. 2021;37:2231–7.

Article  PubMed  Google Scholar 

Wang X, Yu G, Wang J, Zain AM, Guo W. Lung cancer subtype diagnosis using weakly-paired multi-omics data. Bioinformatics. 2022;38:5092–9.

Article  CAS  PubMed  Google Scholar 

Peng W, Liu M, Dai W, Chen T, Fu Y, Pan Y. Multi-view feature aggregation for predicting microbe-disease association. IEEE/ACM Trans Comput Biol Bioinf. 2023;20(5):2748–58.

Google Scholar 

Song J, Peng W, Wang F. Identifying cancer patient subgroups by finding co-modules from the driver mutation profiles and downstream gene expression profiles. IEEE/ACM Trans Comput Biol Bioinf. 2021;19:2863–72.

Article  Google Scholar 

Wang T, Shao W, Huang Z, Tang H, Zhang J, Ding Z, Huang K. MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nat Commun. 2021;12:3445.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Sun Q, Cheng L, Meng A, Ge S, Chen J, Zhang L, Gong P. SADLN: Self-attention based deep learning network of integrating multi-omics data for cancer subtype recognition. Front Genet. 2022;13:1032768.

Article  CAS  PubMed  Google Scholar 

Rappoport N, Shamir R. Multi-omic and multi-view clustering algorithms: review and cancer benchmark. Nucleic Acids Res. 2018;46:10546–62.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dai W, Yue W, Peng W, Fu X, Liu L, Liu L. Identifying cancer subtypes using a residual graph convolution model on a sample similarity network. Genes. 2022;13:65.

Article  CAS  Google Scholar 

Hamilton W, Ying Z, Leskovec J. Inductive representation learning on large graphs. Adv Neural Inform Process Syst. 2017;30:13332.

Google Scholar 

Franco EF, Rana P, Cruz A, Calderón VV, Azevedo V, Ramos RT, Ghosh P. Performance comparison of deep learning autoencoders for cancer subtype detection using multi-omics data. Cancers. 2021;13:2013.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bao J, Chen D, Wen F, Li H, Hua G, CVAE-GAN: fine-grained image generation through asymmetric training, in: Proceedings of the IEEE international conference on computer vision, 2017, pp. 2745–2754.

Yu G, Wang L-G, Han Y, He Q-Y. ClusterProfiler: an R package for comparing biological themes among gene clusters. Omics J integr Biol. 2012;16:284–7.

Article  CAS  Google Scholar 

Guo Y, Lei X, Pan Y. An encoding-decoding framework based on CNN for circRNA-RBP binding sites prediction. Chin J Electron. 2024;33:1–9.

Google Scholar 

Chen M, Jiang Y, Lei X, Pan Y, Ji C, Jiang W. Drug-target interactions prediction based on signed heterogeneous graph neural networks. Chin J Electron. 2024;33:1–13.

ADS  Google Scholar 

Peng W, Che Z, Dai W, Wei S, Lan W. Predicting miRNA-disease associations from miRNA-gene-disease heterogeneous network with multi-relational graph convolutional network model. IEEE/ACM Trans Comput Biol Bioinf. 2023;20(6):3363–75.

Article  Google Scholar 

留言 (0)

沒有登入
gif