Adaptive filter of frequency bands based coordinate attention network for EEG-based motor imagery classification

Cantillo-Negrete J, Carino-Escobar RI, Carrillo-Mora P, Barraza-Madrigal JA, Arias-Carrión O. Robotic orthosis compared to virtual hand for brain–computer interface feedback. Biocybern Biomed Eng. 2019;39(2):263–72. https://doi.org/10.1016/j.bbe.2018.12.002.

Article  Google Scholar 

Ang KK, Chin ZY, Zhang H, Guan C. Filter bank common spatial pattern (FBCSP) in brain-computer interface. In 2008 IEEE International Joint Conference on Neural Networks (IEEE world congress on computational intelligence) pp. 2390–2397 (2008). IEEE. https://doi.org/10.1109/ijcnn.2008.4634130.

Amin SU, Alsulaiman M, Muhammad G, Mekhtiche MA, Hossain MS. Deep learning for EEG motor imagery classification based on multi-layer CNNs feature fusion. Future Gener Comput Syst. 2019;101:542–54. https://doi.org/10.1016/j.future.2019.06.027.

Article  Google Scholar 

Naseer N, Hong KS. fNIRS-based brain-computer interfaces: a review. Front Hum Neurosci. 2015;9:3. https://doi.org/10.3389/fnhum.2015.00003.

Article  PubMed  PubMed Central  Google Scholar 

Da Silva FL. EEG and MEG: relevance to neuroscience. Neuron. 2013;80(5):1112–28. https://doi.org/10.1016/j.neuron.2013.10.017.

Article  CAS  Google Scholar 

Akbari H, Sadiq MT, Siuly S, Li Y, Wen P. Identification of normal and depression EEG signals in variational mode decomposition domain. Health Inf Sci Syst. 2022;10(1):24. https://doi.org/10.1007/s13755-022-00187-7.

Article  PubMed  PubMed Central  Google Scholar 

Li D, Wang Z, Wang C, Liu S, Chi W, Dong E, Song Y. The fusion of electroencephalography and facial expression for continuous emotion recognition. IEEE Access. 2019;7:155724–36. https://doi.org/10.1109/access.2019.2949707.

Article  Google Scholar 

Muhammad G, Alshehri F, Karray F, El Saddik A, Alsulaiman M, Falk TH. A comprehensive survey on multimodal medical signals fusion for smart healthcare systems. Inf Fusion. 2021;76:355–75. https://doi.org/10.1016/j.inffus.2021.06.007.

Article  Google Scholar 

Al-Qazzaz NK, Alyasseri ZAA, Abdulkareem KH, Ali NS, Al-Mhiqani MN, Guger C. EEG feature fusion for motor imagery: a new robust framework towards stroke patients rehabilitation. Comput Biol Med. 2021;137:104799. https://doi.org/10.1016/j.compbiomed.2021.104799.

Article  PubMed  Google Scholar 

Cattan G, Mendoza C, Andreev A, Congedo M. Recommendations for integrating a P300-based brain computer interface in virtual reality environments for gaming. Computers. 2018;7(2):34. https://doi.org/10.3390/computers7020034.

Article  Google Scholar 

Wang J, Yao L, Wang Y, IFNet. An interactive frequency convolutional neural network for enhancing motor imagery decoding from EEG. IEEE Trans Neural Syst Rehabil Eng. 2023;31:1900–11. https://doi.org/10.1109/tnsre.2023.3257319.

Article  PubMed  Google Scholar 

Alizadeh N, Afrakhteh S, Mosavi MR. Multi-task EEG signal classification using correlation-based IMF selection and multi-class CSP. IEEE Access. 2023. https://doi.org/10.1109/access.2023.3274704.

Article  Google Scholar 

Fang H, Jin J, Daly I, Wang X. Feature extraction method based on filter banks and riemannian tangent space in motor-imagery BCI. IEEE J Biomed Health Inform. 2022;26(6):2504–14. https://doi.org/10.1109/jbhi.2022.3146274.

Article  PubMed  Google Scholar 

Mosavi MR, Ayatollahi A, Afrakhteh S. An efficient method for classifying motor imagery using CPSO-trained ANFIS prediction. Evol Syst. 2021;12:319–36. https://doi.org/10.1007/s12530-019-09280-x.

Article  Google Scholar 

Jindal K, Upadhyay R, Singh HS. A novel EEG channel selection and classification methodology for multi-class motor imagery‐based BCI system design. Int J Imaging Syst Technol. 2022;32(4):1318–37. https://doi.org/10.1002/ima.22700.

Article  Google Scholar 

Hwang HJ, Kim S, Choi S, Im CH. EEG-based brain-computer interfaces: a thorough literature survey. Int J Hum Comput Interact. 2013;29(12):814–26. https://doi.org/10.1080/10447318.2013.780869.

Article  Google Scholar 

Wang H, Yu H, Wang H. EEG_GENet: a feature-level graph embedding method for motor imagery classification based on EEG signals. Biocybern Biomed Eng. 2022;42(3):1023–40. https://doi.org/10.1016/j.bbe.2022.08.003.

Article  Google Scholar 

Widmann A, Schröger E. Filter effects and filter artifacts in the analysis of electrophysiological data. Front Psychol. 2012;3:233. https://doi.org/10.3389/fpsyg.2012.00233.

Article  PubMed  PubMed Central  Google Scholar 

Abgeena A, Garg S. S-LSTM-ATT: a hybrid deep learning approach with optimized features for emotion recognition in electroencephalogram. Health Inf Sci Syst. 2023;11(1):40. https://doi.org/10.1007/s13755-023-00242-x.

Article  PubMed  Google Scholar 

Zhang S, Liu G, Xiao R, Cui W, Cai J, Hu X, Qi Y. A combination of statistical parameters for epileptic seizure detection and classification using VMD and NLTWSVM. Biocybern Biomed Eng. 2022;42(1):258–72. https://doi.org/10.1016/j.bbe.2022.02.004.

Article  Google Scholar 

McFarland DJ, Miner LA, Vaughan TM, Wolpaw JR. Mu and beta rhythm topographies during motor imagery and actual movements. Brain Topogr. 2000;12:177–86. https://doi.org/10.1023/A:1023437823106.

Article  CAS  PubMed  Google Scholar 

Neuper C, Scherer R, Wriessnegger S, Pfurtscheller G. Motor imagery and action observation: modulation of sensorimotor brain rhythms during mental control of a brain–computer interface. Clin Neurophysiol. 2008;120(2):239–47. https://doi.org/10.1016/j.clinph.2008.11.015.

Article  Google Scholar 

Avilov O, Rimbert S, Popov A, Bougrain L. Optimizing motor intention detection with deep learning: towards management of intraoperative awareness. IEEE Trans Biomed Eng. 2021;68(10):3087–97. https://doi.org/10.1109/tbme.2021.3064794.

Article  PubMed  Google Scholar 

Grosse-Wentrup M, Buss M. Multiclass common spatial patterns and information theoretic feature extraction. IEEE Trans Biomed Eng. 2008;55(8):1991–2000. https://doi.org/10.1109/tbme.2008.921154.

Article  PubMed  Google Scholar 

Thomas KP, Guan C, Lau CT, Vinod AP, Ang KK. A new discriminative common spatial pattern method for motor imagery brain–computer interfaces. IEEE Trans Biomed Eng. 2009;56(11):2730–3. https://doi.org/10.1109/tbme.2009.2026181.

Article  PubMed  Google Scholar 

Luo TJ, Zhou CL, Chao F. Exploring spatial-frequency-sequential relationships for motor imagery classification with recurrent neural network. BMC Bioinformatics. 2018;19(1):1–18. https://doi.org/10.1186/s12859-018-2365-1.

Article  Google Scholar 

Cho K, Van Merriënboer B, Gulcehre C, Bahdanau D, Bougares F, Schwenk H, Bengio Y. Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv Preprint arXiv:14061078 (2014).

Lawhern VJ, Solon AJ, Waytowich NR, Gordon SM, Hung CP, Lance BJ. EEGNet: a compact convolutional neural network for EEG-based brain–computer interfaces. J Neural Eng. 2018;15(5):056013. https://doi.org/10.1088/1741-2552/aace8c.

Article  PubMed  Google Scholar 

Ingolfsson TM, Hersche M, Wang X, Kobayashi N, Cavigelli L, Benini L. EEG-TCNet: An accurate temporal convolutional network for embedded motor-imagery brain–machine interfaces. In 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC). pp. 2958–2965 (2020). https://doi.org/10.1109/smc42975.2020.9283028.

Kilintari M, Narayana S, Babajani-Feremi A, Rezaie R, Papanicolaou AC. Brain activation profiles during kinesthetic and visual imagery: an fMRI study. Brain Res. 2016;1646:249–61. https://doi.org/10.1016/j.brainres.2016.06.009.

Article  CAS  PubMed  Google Scholar 

Ravanelli M, Bengio Y. Interpretable convolutional filters with sincnet. arXiv preprint arXiv:1811.09725 (2018).

Hou Q, Zhou D, Feng J. Coordinate attention for efficient mobile network design. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 13713–13722 (2021). https://doi.org/10.1109/cvpr46437.2021.01350.

Brunner C, Leeb R, Müller-Putz G, Schlögl A, Pfurtscheller G. BCI Competition 2008–Graz data set A. Institute for Knowledge Discovery (Laboratory of Brain-Computer Interfaces), Graz University of Technology. 16, 1–6 (2008).

Leeb R, Brunner C, Müller-Putz G, Schlögl A, Pfurtscheller G. BCI Competition 2008–Graz data set B. Graz Univ Technol. 2008;16:1–6.

Google Scholar 

Wang Z, Wang Y, Zhang J, Hu C, Yin Z, Song Y. Spatial-temporal feature fusion neural network for EEG-based emotion recognition. IEEE Trans Instrum Meas. 2022;71:1–12. https://doi.org/10.1109/tim.2022.3165280.

Article  Google Scholar 

Wang Z, Wang Y, Hu C, Yin Z, Song Y. Transformers for EEG-based emotion recognition: a hierarchical spatial information learning model. IEEE Sens J. 2022;22(5):4359–68. https://doi.org/10.1109/jsen.2022.3144317.

Article  ADS  Google Scholar 

Abgeena A, Garg S. A novel convolution bi-directional gated recurrent unit neural network for emotion recognition in multichannel electroencephalogram signals. Technol Health Care. 2023;31:1215–34. https://doi.org/10.3233/THC-220458.

Article  PubMed  Google Scholar 

Schirrmeister RT, Springenberg JT, Fiederer LDJ, Glasstetter M, Eggensperger K, Tangermann M, Ball T. Deep learning with convolutional neural networks for EEG decoding and visualization. Hum Brain Mapp. 2017;38(11):5391–420. https://doi.org/10.1002/hbm.23730.

Article  PubMed  PubMed Central  Google Scholar 

Wu H, Niu Y, Li F, Li Y, Fu B, Shi G, Dong M. A parallel multiscale filter bank convolutional neural networks for motor imagery EEG classification. Front Neurosci. 2019;13:1275. https://doi.org/10.3389/fnins.2019.01275.

Article  PubMed  PubMed Central  Google Scholar 

Li MA, Han JF, Duan LJ. A novel MI-EEG imaging with the location information of electrodes. IEEE Access. 2019;8:3197–211. https://doi.org/10.1109/access.2019.2962740.

Article  Google Scholar 

Zhao Y, Yao S, Hu S, Chang S, Ganti R, Srivatsa M, Abdelzaher T. On the improvement of classifying EEG recordings using neural networks. In 2017 IEEE International Conference on Big Data (Big Data) pp. 1709–1711 (2017). https://doi.org/10.1109/bigdata.2017.8258112.

Woo S, Park J, Lee JY, Kweon IS. Cbam: Convolutional block attention module. In Proceedings of the European Conference on Computer Vision (ECCV). pp. 3–19 (2018) https://doi.org/10.1007/978-3-030-01234-2_1.

Wang J, Chen W, Li M. A multi-classification algorithm based on multi-domain information fusion for motor imagery BCI. Biomed Signal Process Control. 2023;79:104252. https://doi.org/10.1016/j.bspc.2022.104252.

Article  Google Scholar 

Hou Y, Chen T, Lun X, Wang F. A novel method for classification of multi-class motor imagery tasks based on feature fusion. Neurosci Res. 2022;176:40–8. https://doi.org/10.1016/j.neures.2021.09.002.

Article  PubMed  Google Scholar 

Liu G, Tian L, Zhou W. Multiscale time-frequency method for multiclass motor imagery brain computer interface. Comput Biol Med. 2022;143:105299. https://doi.org/10.1016/j.compbiomed.2022.105299.

Article 

留言 (0)

沒有登入
gif