Propionic and valproic acids have an impact on bacteria viability, proton flux and ATPase activity

Abhishek M, Rubal S, Rohit K, Rupa J, Abhishek M, Rubal S, Rohit K, Rupa J, Phulen S, Gurjeet K, Raj SA, Manisha P, Alka B, Ramprasad P, Bikash M (2022) Neuroprotective effect of the standardised extract of Bacopa monnieri (BacoMind) in valproic acid model of autism spectrum disorder in rats. J Ethnopharmacol 293:115199

Article  CAS  PubMed  Google Scholar 

Al-Lahham SH, Peppelenbosch MP, Roelofsen H, Vonk RJ, Venema K (2010) Biological effects of propionic acid in humans; metabolism, potential applications and underlying mechanisms. Biochim Biophys Acta 1801:1175–1183. https://doi.org/10.1016/j.bbalip.2010.07.007

Article  CAS  PubMed  Google Scholar 

Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H (2006) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2:2006–20008. https://doi.org/10.1038/msb4100050

Article  CAS  PubMed Central  Google Scholar 

Bae YM, Song H, Lee SY (2021) Salt, glucose, glycine, and sucrose protect Escherichia coli O157:H7 against acid treatment in laboratory media. Food Microbiol 100:103854. https://doi.org/10.1016/j.fm.2021.103854

Article  CAS  PubMed  Google Scholar 

Beagle SD, Lockless SW (2021) Unappreciated roles for K+ channels in bacterial physiology. Trends Microbiol 29:942–950. https://doi.org/10.1016/j.tim.2020.11.005

Article  CAS  PubMed  Google Scholar 

Blbulyan S, Trchounian A (2015) Impact of membrane-associated hydrogenases on the FOF1-ATPase in Escherichia coli during glycerol and mixed carbon fermentation: ATPase activity and its inhibition by N, N’-dicyclohexylcarbodiimide in the mutants lacking hydrogenases. Arch Biochem Biophys 579:67–72. https://doi.org/10.1016/j.abb.2015.05.015

Article  CAS  PubMed  Google Scholar 

Breijyeh Z, Jubeh B, Karaman R (2020) Resistance of gram-negative bacteria to current antibacterial agents and approaches to resolve it. Molecules 25:1340. https://doi.org/10.3390/molecules25061340

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cao X, Liu K, Liu J, Liu YW, Cao X, Liu K, Liu J, Liu Y-W, Xu Li, Wang H, Zhu Y, Wang P, Li Z, Wen J, Shen C, Li M, Nie Z, Kong X-J (2021) Dysbiotic gut microbiota and dysregulation of cytokine profile in children and teens with Autism spectrum disorder. Front Neurosci 15:635925. https://doi.org/10.3389/fnins.2021.635925

Article  PubMed  PubMed Central  Google Scholar 

Chun AY, Yunxiao L, Ashok S, Seol E, Park S (2014) Elucidation of toxicity of organic acids inhibiting growth of Escherichia coli W. Biotechnol Bioproc E 19:858–865. https://doi.org/10.1007/s12257-014-0420-y

Article  CAS  Google Scholar 

Coban HB (2020) Organic acids as antimicrobial food agents: applications and microbial productions. Bioproc Biosyst Engineer 43:569–591

Article  CAS  Google Scholar 

de Theije CG, Wopereis H, Ramadan M, van Eijndthoven T, Lambert J, Knol J, Garssen J, Kraneveld AD, Oozeer R (2014) Altered gut microbiota and activity in a murine model of autism spectrum disorders. Brain Behav Immun 37:197–206. https://doi.org/10.1016/j.bbi.2013.12.005

Article  CAS  PubMed  Google Scholar 

Drews HJ, Yenkoyan K, Lourhmati A, Buadze M, Kabisch D, Verleysdonk S, Petschak S, Beer-Hammer S, Davtyan T, Frey WH et al (2019) Intranasal Losartan decreases perivascular Beta amyloid, inflammation, and the decline of neurogenesis in hypertensive rats. Neurotherapeutics 16:725–740. https://doi.org/10.1007/s13311-019-00723-6

Article  CAS  PubMed  PubMed Central  Google Scholar 

Esiobu N, Hoosein N (2003) An assessment of the in vitro antimicrobial effects of two antiepileptic drugs–sodium valproate and phenytoin. Antonie Van Leeuwenhoek 83:63–68. https://doi.org/10.1023/a:1022992224594

Article  CAS  PubMed  Google Scholar 

Fereshetyan K, Chavushyan V, Danielyan M, Yenkoyan K (2021) Assessment of behavioral, morphological and electrophysiological changes in prenatal and postnatal valproate induced rat models of autism spectrum disorder. Sci Rep 11:23471. https://doi.org/10.1038/s41598-021-02994-6

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gabrielyan L, Hovhannisyan A, Gevorgyan V, Ananyan M, Trchounian A (2019) Antibacterial effects of iron oxide (Fe3O4) nanoparticles: distinguishing concentration-dependent effects with different bacterial cells growth and membrane-associated mechanisms. Appl Microbiol Biotechnol 103:2773–2782. https://doi.org/10.1007/s00253-019-09653-x

Article  CAS  PubMed  Google Scholar 

Garcia-Gutierrez E, Narbad A, Rodríguez JM (2020) Autism spectrum disorder associated with gut microbiota at immune, metabolomic, and neuroactive level. Front Neurosci 14:578666. https://doi.org/10.3389/fnins.2020.578666

Article  PubMed  PubMed Central  Google Scholar 

Gevorgyan H (2021) The role of proton ATPase specific inhibitor N,N’-dicyclohexylcarbodiimide and external formate concentration on E. coli growth during mixed carbon sources fermentation at different pHs. Proc YSU B: Chem Biol Sci 55:67–74. https://doi.org/10.46991/PYSU:B/2021.55.1.067

Article  Google Scholar 

Gevorgyan H, Khalatyan S, Vassilian A, Trchounian K (2021) The role of Escherichia coli FhlA transcriptional activator in generation of proton motive force and FOF1 -ATPase activity at pH 7.5. IUBMB Life 73:883–892. https://doi.org/10.1002/iub.2470

Article  CAS  PubMed  Google Scholar 

Gevorgyan H, Trchounian A, Trchounian K (2018) Understanding the role of Escherichia coli Hydrogenases and Formate Dehydrogenases in the FOF1 -ATPase activity during the mixed acid fermentation of mixture of Carbon sources. IUBMB Life 70:1040–1047. https://doi.org/10.1002/iub.1915

Article  CAS  PubMed  Google Scholar 

Gevorgyan H, Trchounian A, Trchounian K (2019) Formate and potassium ions affect Escherichia coli DCCD-sensitive ATPase activity at low pH during mixed carbon fermentation. IUBMB Life 72:915–921. https://doi.org/10.1002/iub.2219

Article  CAS  PubMed  Google Scholar 

Gómez-García M, Sol C, de Nova PJG, Puyalto M, Mesas L, Puente H, Mencía-Ares Ó, Miranda R, Argüello H, Rubio P, Gómez-García M, Sol C, de Nova PJG, Puyalto M, Mesas L, Puente H, Mencía-Ares Ó, Miranda R, Argüello H, Rubio P, Carvajal A (2019) Antimicrobial activity of a selection of organic acids, their salts and essential oils against swine enteropathogenic bacteria. Porc Health Manag 5:1–8. https://doi.org/10.1186/s40813-019-0139-4

Article  Google Scholar 

Gonzalez-Garcia RA, McCubbin T, Turner MS, Nielsen LK, Marcellin E (2019) Engineering Escherichia coli for propionic acid production through the Wood-Werkman cycle. Biotechnol Bioeng 117:167–183. https://doi.org/10.1002/bit.27182

Article  CAS  PubMed  Google Scholar 

Gonzalez-Garcia RA, McCubbin T, Wille A, Plan M, Nielsen LK, Marcellin E (2017) Awakening sleeping beauty: production of propionic acid in Escherichia coli through the sbm operon requires the activity of a methylmalonyl-CoA epimerase. Microb Cell Fact 16:121. https://doi.org/10.1186/s12934-017-0735-4

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guan N, Liu L (2020) Microbial response to acid stress: mechanisms and applications. Appl Microbiol Biotechnol 104:51–65. https://doi.org/10.1007/s00253-019-10226-1

Article  CAS  PubMed  Google Scholar 

Haque M, Chowdhury R, Islam K, Akbar M (2012) Propionic acid is an alternative to antibiotics in poultry diet. Bangladesh J Animal Sci 38:115–122. https://doi.org/10.3329/bjas.v38i1-2.9920

Article  Google Scholar 

Henderson PJ, Maher C, Elbourne LD, Eijkelkamp BA, Paulsen IT, Hassan KA (2021) Physiological functions of bacterial multidrug efflux pumps. Chem Rev 24:5417–5478. https://doi.org/10.1021/acs.chemrev.0c01226

Article  CAS  Google Scholar 

Kaja S, Payne AJ, Naumchuk Y, Koulen P (2017) Quantification of Lactate dehydrogenase for cell viability testing using cell lines and primary cultured astrocytes. Curr Protoc Toxicol 72:1–10. https://doi.org/10.1002/cptx.21

Article  CAS  Google Scholar 

Karapetyan L, Mikoyan G, Vassilian A, Valle A, Bolivar J, Trchounian A, Trchounian K (2021) Escherichia coli Dcu C4-dicarboxylate transporters dependent proton and potassium fluxes and FOF1-ATPase activity during glucose fermentation at pH 7.5. Bioelectrochem 141:107867. https://doi.org/10.1016/j.bioelechem.2021.107

Article  CAS  Google Scholar 

Karapetyan L, Valle A, Bolivar J, Trchounian A, Trchounian K (2019) Evidence for Escherichia coli DcuD carrier dependent F. Sci Rep 9:4279. https://doi.org/10.1038/s41598-019-41044-0

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kashket ER (1987) Bioenergetics of lactic acid bacteria: cytoplasmic pH and osmotolerance. FEMS Microbiol Rev 46:233–244. https://doi.org/10.1016/0378-1097(87)90110-8

Article  CAS  Google Scholar 

Killingsworth JD, Sawmiller, Shytle RD (2021) Propionate and Alzheimer’s disease. Front Aging Neurosci 12:580001. https://doi.org/10.3389/fnagi.2020.580001

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kovanda L, Zhang W, Wei X, Luo J, Wu X, Atwill ER, Vaessen S, Li X, Liu Y (2019) In vitro antimicrobial activities of organic acids and their derivatives on several species of gram-negative and gram-positive bacteria. Molecules 24:3770. https://doi.org/10.3390/molecules24203770

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee SY, Kang DH (2009) Combined effects of heat, acetic acid, and salt for inactivating Escherichia coli O157:H7 in laboratory media. Food Control 20:1006–1012. https://doi.org/10.1016/j.foodcont.2008.12.002

留言 (0)

沒有登入
gif