Artemisinins inhibit oral candidiasis caused by Candida albicans through the repression on its hyphal development

Belvoncikova, P., Splichalova, P., Videnska, P. & Gardlik, R. The human mycobiome: colonization, composition and the role in health and disease. J. Fungi 8, 1046 (2022).

Article  Google Scholar 

Ghannoum, M. A. et al. Characterization of the oral fungal microbiome (mycobiome) in healthy individuals. PLoS Pathog. 6, e1000713 (2010).

Article  PubMed  PubMed Central  Google Scholar 

Lopes, J. P. & Lionakis, M. S. Pathogenesis and virulence of Candida albicans. Virulence 13, 89–121 (2022).

Article  PubMed  Google Scholar 

Proctor, D. M., Drummond, R. A., Lionakis, M. S. & Segre, J. A. One population, multiple lifestyles: commensalism and pathogenesis in the human mycobiome. Cell Host Microbe 31, 539–553 (2023).

Article  PubMed  Google Scholar 

Miceli, M. H., Díaz, J. A. & Lee, S. A. Emerging opportunistic yeast infections. Lancet Infect. Dis. 11, 142–151 (2011).

Article  PubMed  Google Scholar 

Mahalingam, S. S., Jayaraman, S. & Pandiyan, P. Fungal colonization and infections—interactions with other human diseases. Pathogens 11, 212 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Saftien, A., Puschhof, J. & Elinav, E. Fungi and cancer. Gut 72, 1410–1425 (2023).

Article  PubMed  Google Scholar 

Talapko, J. et al. Candida albicans—the virulence factors and clinical manifestations of infection. J. Fungi 7, 79 (2021).

Article  Google Scholar 

Swidergall, M. & Filler, S. G. Oropharyngeal candidiasis: fungal invasion and epithelial cell responses. PLoS Pathog. 13, e1006056 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Patel, M. Oral cavity and Candida albicans: colonisation to the development of infection. Pathogens 11, 335 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Zhou, Y., Cheng, L., Lei, Y. L., Ren, B. & Zhou, X. The interactions between candida albicans and mucosal immunity. Front. Microbiol. 12, 652765 (2021).

Google Scholar 

Sultan, A. S., Theofilou, V. I., Alfaifi, A., Montelongo-Jauregui, D. & Jabra-Rizk, M.-A. Is Candida albicans an opportunistic oncogenic pathogen? PLoS Pathog. 18, e1010413 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Dohlman, A. B. et al. A pan-cancer mycobiome analysis reveals fungal involvement in gastrointestinal and lung tumors. Cell 185, 3807–3822.e3812 (2022).

Article  PubMed  Google Scholar 

Chen, H., Zhou, X., Ren, B. & Cheng, L. The regulation of hyphae growth in Candida albicans. Virulence 11, 337–348 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Sundstrom, P. Adhesins in Candida albicans. Curr. Opin. Microbiol. 2, 353–357 (1999).

Article  PubMed  Google Scholar 

Naglik, J. R., König, A., Hube, B. & Gaffen, S. L. Candida albicans–epithelial interactions and induction of mucosal innate immunity. Curr. Opin. Microbiol. 40, 104–112 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Lachat, J. et al. Trans-cellular tunnels induced by the fungal pathogen Candida albicans facilitate invasion through successive epithelial cells without host damage. Nat. Commun. 13, 3781 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Zhou, Y. et al. ERG3 and ERG11 genes are critical for the pathogenesis of Candida albicansduring the oral mucosal infection. Int. J. Oral. Sci. 10, 9 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Moyes, D. L. et al. Candidalysin is a fungal peptide toxin critical for mucosal infection. Nature 532, 64–68 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Kasper, L. et al. The fungal peptide toxin Candidalysin activates the NLRP3 inflammasome and causes cytolysis in mononuclear phagocytes. Nat. Commun. 9, 4260 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Austermeier, S., Kasper, L., Westman, J. & Gresnigt, M. S. I want to break free – macrophage strategies to recognize and kill Candida albicans, and fungal counter-strategies to escape. Curr. Opin. Microbiol. 58, 15–23 (2020).

Article  PubMed  Google Scholar 

König, A., Hube, B. & Kasper, L. The dual function of the fungal toxin candidalysin during candida albicans—macrophage interaction and virulence. Toxins 12, 469 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Köhler, J. R. & Fink, G. R. Candida albicans strains heterozygous and homozygous for mutations in mitogen-activated protein kinase signaling components have defects in hyphal development. Proc. Natl. Acad. Sci. 93, 13223–13228 (1996).

Article  PubMed  PubMed Central  Google Scholar 

Davis, D. Adaptation to environmental pH in Candida albicans and its relation to pathogenesis. Curr. Genet. 44, 1–7 (2003).

Article  PubMed  Google Scholar 

Román, E., Correia, I., Prieto, D., Alonso, R. & Pla, J. The HOG MAPK pathway in Candida albicans: more than an osmosensing pathway. Int. Microbiol. 23, 23–29 (2020).

Article  PubMed  Google Scholar 

Liao, B. et al. The two-component signal transduction system and its regulation in Candida albicans. Virulence 12, 1884–1899 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Liu, H. Transcriptional control of dimorphism in Candida albicans. Curr. Opin. Microbiol. 4, 728–735 (2001).

Article  PubMed  Google Scholar 

Davis‐Hanna, A., Piispanen, A. E., Stateva, L. I. & Hogan, D. A. Farnesol and dodecanol effects on the Candida albicans Ras1‐cAMP signalling pathway and the regulation of morphogenesis. Mol. Microbiol. 67, 47–62 (2008).

Article  PubMed  PubMed Central  Google Scholar 

Silao, F. G. S. et al. Mitochondrial proline catabolism activates Ras1/cAMP/PKA-induced filamentation in Candida albicans. PLOS Genet. 15, e1007976 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Fang, H. M. & Wang, Y. RA domain‐mediated interaction of Cdc35 with Ras1 is essential for increasing cellular cAMP level for Candida albicans hyphal development. Mol. Microbiol. 61, 484–496 (2006).

Article  PubMed  Google Scholar 

Feng, Q., Summers, E., Guo, B. & Fink, G. Ras signaling is required for serum-induced hyphal differentiation in Candida albicans. J. Bacteriol. 181, 6339–6346 (1999).

Article  PubMed  PubMed Central  Google Scholar 

Huang, G., Huang, Q., Wei, Y., Wang, Y. & Du, H. Multiple roles and diverse regulation of the Ras/cAMP/protein kinase a pathway in Candida albicans. Mol. Microbiol. 111, 6–16 (2019).

Article  PubMed  Google Scholar 

Xu, X.-L. et al. Bacterial peptidoglycan triggers Candida albicans hyphal growth by directly activating the adenylyl cyclase Cyr1p. Cell Host Microbe 4, 28–39 (2008).

Article  PubMed  Google Scholar 

Lin, C.-J., Wu, C.-Y., Yu, S.-J. & Chen, Y.-L. Protein kinase a governs growth and virulence in Candida tropicalis. Virulence 9, 331–347 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Cloutier, M. et al. The two isoforms of the cAMP-dependent protein kinase catalytic subunit are involved in the control of dimorphism in the human fungal pathogen Candida albicans. Fungal Genet. Biol. 38, 133–141 (2003).

Article  PubMed  Google Scholar 

Huang, M. Y., Woolford, C. A., May, G., McManus, C. J. & Mitchell, A. P. Circuit diversification in a biofilm regulatory network. PLoS Pathog. 15, e1007787 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Zeidler, U. et al. UME6 is a crucial downstream target of other transcriptional regulators of true hyphal development in Candida albicans. FEMS Yeast Res. 9, 126–142 (2009).

Article  PubMed  Google Scholar 

Cravener, M. V. et al. Reinforcement amid genetic diversity in the Candida albicans biofilm regulatory network. PLoS Pathog. 19, e1011109 (2023).

Article  PubMed  PubMed Central  Google Scholar 

Singh, A., Sharma, S. & Khuller, G. K. cAMP regulates vegetative growth and cell cycle in Candida albicans. Mol. Cell. Biochem. 304, 331–341 (2007).

Article  PubMed  Google Scholar 

Bai, C. et al. Characterization of a hyperactive Cyr1 mutant reveals new regulatory mechanisms for cellular cAMP levels in Candida albicans. Mol. Microbiol. 82, 879–893 (2011).

Article  PubMed  Google Scholar 

Bu, Q.-R., Bao, M.-Y., Yang, Y., Wang, T.-M. & Wang, C.-Z. Targeting virulence factors of Candida albicans with natural products. Foods 11, 2951 (2022).

Article 

留言 (0)

沒有登入
gif