Influences of Aged Bone Marrow Macrophages on Skeletal Health and Senescence

Li G, Thabane L, Papaioannou A, Ioannidis G, Levine MA, Adachi JD. An overview of osteoporosis and frailty in the elderly. BMC Musculoskelet Disord. 2017;18(1):46. https://doi.org/10.1186/s12891-017-1403-x.

Article  PubMed  PubMed Central  Google Scholar 

Office of the Surgeon General (US). Bone Health and Osteoporosis: A Report of the Surgeon General. Rockville (MD): Office of the Surgeon General (US); 2004. Available from: https://www.ncbi.nlm.nih.gov/books/NBK45513/.

van Staa TP, Dennison EM, Leufkens HG, Cooper C. Epidemiology of fractures in England and Wales. Bone. 2001;29(6):517–22. https://doi.org/10.1016/s8756-3282(01)00614-7.

Article  PubMed  Google Scholar 

Briggs AM, Cross MJ, Hoy DG, Sanchez-Riera L, Blyth FM, Woolf AD, et al. Musculoskeletal health conditions represent a global threat to healthy aging: a report for the 2015 World Health Organization world report on ageing and health. Gerontologist. 2016;56(Suppl 2):S243–55. https://doi.org/10.1093/geront/gnw002.

Article  PubMed  Google Scholar 

Nahrendorf M, Swirski FK. Abandoning M1/M2 for a network model of macrophage function. Circ Res. 2016;119(3):414–7. https://doi.org/10.1161/CIRCRESAHA.116.309194.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sinder BP, Pettit AR, McCauley LK. Macrophages: their emerging roles in bone. J Bone Miner Res. 2015;30(12):2140–9. https://doi.org/10.1002/jbmr.2735.

Article  PubMed  Google Scholar 

Yahara Y, Barrientos T, Tang YJ, Puviindran V, Nadesan P, Zhang H, et al. Erythromyeloid progenitors give rise to a population of osteoclasts that contribute to bone homeostasis and repair. Nat Cell Biol. 2020;22(1):49–59. https://doi.org/10.1038/s41556-019-0437-8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jacome-Galarza CE, Percin GI, Muller JT, Mass E, Lazarov T, Eitler J, et al. Developmental origin, functional maintenance and genetic rescue of osteoclasts. Nature. 2019;568(7753):541–5. https://doi.org/10.1038/s41586-019-1105-7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhong L, Lu J, Fang J, Yao L, Yu W, Gui T, et al. Csf1 from marrow adipogenic precursors is required for osteoclast formation and hematopoiesis in bone. Elife. 2023;12. https://doi.org/10.7554/eLife.82112.

Udagawa N, Koide M, Nakamura M, Nakamichi Y, Yamashita T, Uehara S, et al. Osteoclast differentiation by RANKL and OPG signaling pathways. J Bone Miner Metab. 2021;39(1):19–26. https://doi.org/10.1007/s00774-020-01162-6.

Article  CAS  PubMed  Google Scholar 

Ginhoux F, Guilliams M. Tissue-resident macrophage ontogeny and homeostasis. Immunity. 2016;44(3):439–49. https://doi.org/10.1016/j.immuni.2016.02.024.

Article  CAS  PubMed  Google Scholar 

Locati M, Curtale G, Mantovani A. Diversity, mechanisms, and significance of macrophage plasticity. Annu Rev Pathol. 2020;15:123–47. https://doi.org/10.1146/annurev-pathmechdis-012418-012718.

Article  CAS  PubMed  Google Scholar 

Medzhitov R, Janeway C Jr. Innate immune recognition: mechanisms and pathways. Immunol Rev. 2000;173:89–97. https://doi.org/10.1034/j.1600-065x.2000.917309.x.

Article  CAS  PubMed  Google Scholar 

Andersson U, Wang H, Palmblad K, Aveberger AC, Bloom O, Erlandsson-Harris H, et al. High mobility group 1 protein (HMG-1) stimulates proinflammatory cytokine synthesis in human monocytes. J Exp Med. 2000;192(4):565–70. https://doi.org/10.1084/jem.192.4.565.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shapouri-Moghaddam A, Mohammadian S, Vazini H, Taghadosi M, Esmaeili SA, Mardani F, et al. Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol. 2018;233(9):6425–40. https://doi.org/10.1002/jcp.26429.

Article  CAS  PubMed  Google Scholar 

Liu G, Ma H, Qiu L, Li L, Cao Y, Ma J, et al. Phenotypic and functional switch of macrophages induced by regulatory CD4+CD25+ T cells in mice. Immunol Cell Biol. 2011;89(1):130–42. https://doi.org/10.1038/icb.2010.70.

Article  CAS  PubMed  Google Scholar 

Murray PJ. Macrophage polarization. Annu Rev Physiol. 2017;79:541–66. https://doi.org/10.1146/annurev-physiol-022516-034339.

Article  CAS  PubMed  Google Scholar 

Singh T, Newman AB. Inflammatory markers in population studies of aging. Ageing Res Rev. 2011;10(3):319–29. https://doi.org/10.1016/j.arr.2010.11.002.

Article  CAS  PubMed  Google Scholar 

Cunha LL, Perazzio SF, Azzi J, Cravedi P, Riella LV. Remodeling of the immune response with aging: immunosenescence and its potential impact on COVID-19 immune response. Front Immunol. 2020;11:1748. https://doi.org/10.3389/fimmu.2020.01748.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee CU, Song EK, Yoo CH, Kwak YK, Han MK. Lipopolysaccharide induces CD38 expression and solubilization in J774 macrophage cells. Mol Cells. 2012;34(6):573–6. https://doi.org/10.1007/s10059-012-0263-3.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chini CCS, Cordeiro HS, Tran NLK, Chini EN. NAD metabolism: role in senescence regulation and aging. Aging Cell. 2023:e13920. https://doi.org/10.1111/acel.13920.

Zhu XH, Lu M, Lee BY, Ugurbil K, Chen W. In vivo NAD assay reveals the intracellular NAD contents and redox state in healthy human brain and their age dependences. Proc Natl Acad Sci U S A. 2015;112(9):2876–81. https://doi.org/10.1073/pnas.1417921112.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Elhassan YS, Kluckova K, Fletcher RS, Schmidt MS, Garten A, Doig CL, et al. Nicotinamide riboside augments the aged human skeletal muscle NAD(+) metabolome and induces transcriptomic and anti-inflammatory signatures. Cell Rep. 2019;28(7):1717-28 e6. https://doi.org/10.1016/j.celrep.2019.07.043.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Clement J, Wong M, Poljak A, Sachdev P, Braidy N. The plasma NAD(+) metabolome is dysregulated in “normal” aging. Rejuvenation Res. 2019;22(2):121–30. https://doi.org/10.1089/rej.2018.2077.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chu X, Raju RP. Regulation of NAD(+) metabolism in aging and disease. Metabolism. 2022;126:154923. https://doi.org/10.1016/j.metabol.2021.154923.

Article  CAS  PubMed  Google Scholar 

Kim HN, Ponte F, Warren A, Ring R, Iyer S, Han L, et al. A decrease in NAD(+) contributes to the loss of osteoprogenitors and bone mass with aging. NPJ Aging Mech Dis. 2021;7(1):8. https://doi.org/10.1038/s41514-021-00058-7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jablonski KA, Amici SA, Webb LM, Ruiz-Rosado Jde D, Popovich PG, Partida-Sanchez S, et al. Novel markers to delineate murine M1 and M2 macrophages. PLoS One. 2015;10(12):e0145342. https://doi.org/10.1371/journal.pone.0145342.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Clark D, Brazina S, Yang F, Hu D, Hsieh CL, Niemi EC, et al. Age-related changes to macrophages are detrimental to fracture healing in mice. Aging Cell. 2020;19(3):e13112. https://doi.org/10.1111/acel.13112.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Olmsted-Davis E, Mejia J, Salisbury E, Gugala Z, Davis AR. A population of M2 macrophages associated with bone formation. Front Immunol. 2021;12:686769. https://doi.org/10.3389/fimmu.2021.686769.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kanis JA, McCloskey EV, Beneton MN. Clodronate and osteoporosis. Maturitas. 1996;23(Suppl):S81–6. https://doi.org/10.1016/0378-5122(96)01018-3.

Article  CAS  PubMed  Google Scholar 

Michalski MN, Zweifler LE, Sinder BP, Koh AJ, Yamashita J, Roca H, et al. Clodronate-loaded liposome treatment has site-specific skeletal effects. J Dent Res. 2019;98(4):459–67. https://doi.org/10.1177/0022034518821685.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Champagne CM, Takebe J, Offenbacher S, Cooper LF. Macrophage cell lines produce osteoinductive signals that include bone morphogenetic protein-2. Bone. 2002;30(1):26–31. https://doi.org/10.1016/s8756-3282(01)00638-x.

Article  CAS  PubMed  Google Scholar 

Pirraco RP, Reis RL, Marques AP. Effect of monocytes/macrophages on the early osteogenic differentiation of hBMSCs. J Tissue Eng Regen Med. 2013;7(5):392–400. https://doi.org/10.1002/term.535.

Article  CAS  PubMed  Google Scholar 

Fernandes TJ, Hodge JM, Singh PP, Eeles DG, Collier FM, Holten I, et al. Cord blood-derived macrophage-lineage cells rapidly stimulate osteoblastic maturation in mesenchymal stem cells in a glycoprotein-130 dependent manner. PLoS One. 2013;8(9):e73266. https://doi.org/10.1371/journal.pone.0073266.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif