Osteocytes and Primary Cilia

Schaffler MB, Cheung W-Y, Majeska R, Kennedy O. Osteocytes: master orchestrators of bone. Calcif Tissue Int. 2014;94:5–24. https://doi.org/10.1007/s00223-013-9790-y.

Article  CAS  PubMed  Google Scholar 

Birmingham E, Niebur GL, McHugh PE, Shaw G, Barry FP, Mcnamara LM. Osteogenic differentiation of mesenchymal stem cells is regulated by osteocyte and osteoblast cells in a simplified bone niche. Eur Cells Mater. 2012;23:13–27.

Article  CAS  Google Scholar 

Nguyen AM, Jacobs CR. Emerging role of primary cilia as mechanosensors in osteocytes. Bone. 2013;54:196–204. https://doi.org/10.1016/j.bone.2012.11.016.

Article  CAS  PubMed  Google Scholar 

Frost HM. In vivo osteocyte death. JBJS. 1960;42:138–43.

Article  Google Scholar 

Palumbo C, Palazzini S, Zaffe D, Marotti G. Osteocyte differentiation in the tibia of newborn rabbit: an ultrastructural study of the formation of cytoplasmic processes. Cells Tissues Organs. 1990;137:350–8.

Article  CAS  Google Scholar 

Xia X, Batra N, Shi Q, Bonewald LF, Sprague E, Jiang JX. Prostaglandin promotion of osteocyte gap junction function through transcriptional regulation of connexin 43 by glycogen synthase kinase 3/β-catenin signaling. Mol Cell Biol. 2010;30:206–19.

Article  CAS  PubMed  Google Scholar 

Buenzli PR, Sims NA. Quantifying the osteocyte network in the human skeleton. Bone. 2015;75:144–50. https://doi.org/10.1016/j.bone.2015.02.016.

Article  CAS  PubMed  Google Scholar 

Repp F, Kollmannsberger P, Roschger A, Kerschnitzki M, Berzlanovich A, Gruber GM, Roschger P, Wagermaier W, Weinkamer R. Spatial heterogeneity in the canalicular density of the osteocyte network in human osteons. Bone Rep. 2017;6:101–8.

Article  PubMed  PubMed Central  Google Scholar 

Dallas SL, Moore DS. Using confocal imaging approaches to understand the structure and function of osteocytes and the lacunocanalicular network. Bone. 2020;138. https://doi.org/10.1016/j.bone.2020.115463.

Heveran CM, Schurman CA, Acevedo C, Livingston EW, Howe D, Schaible EG, Hunt HB, Rauff A, Donnelly E, Carpenter RD. Chronic kidney disease and aging differentially diminish bone material and microarchitecture in C57Bl/6 mice. Bone. 2019;127:91–103.

Article  PubMed  PubMed Central  Google Scholar 

Heveran CM, Rauff A, King KB, Carpenter RD, Ferguson VL. A new open-source tool for measuring 3D osteocyte lacunar geometries from confocal laser scanning microscopy reveals age-related changes to lacunar size and shape in cortical mouse bone. Bone. 2018;110:115–27.

Article  PubMed  PubMed Central  Google Scholar 

Tiede-Lewis LM, Xie Y, Hulbert MA, Campos R, Dallas MR, Dusevich V, Bonewald LF, Dallas SL. Degeneration of the osteocyte network in the C57BL/6 mouse model of aging. Aging (Albany. NY). 2017;9:2190–2208. https://doi.org/10.18632/aging.101308.

Schurman CA, Verbruggen SW, Alliston T. Degenerated lacunocanalicular networks, mass transport and osteocyte pericellular fluid flow in bone with aging and disrupted TGFB signaling. Proc Natl Acad Sci U S A. 2021;118:e2023999118. https://doi.org/10.1073/pnas.2023999118.

Article  CAS  PubMed  PubMed Central  Google Scholar 

McNamara LM, Majeska RJ, Weinbaum S, Friedrich V, Schaffler MB. Attachment of osteocyte cell processes to the bone matrix. Anat Rec. 2009;292:355–63. https://doi.org/10.1002/ar.20869.

Article  CAS  Google Scholar 

Wang, Y.; McNamara, L.M.; Schaffler, M.B.; Weinbaum, S. A model for the role of integrins in flow induced mechanotransduction in osteocytes. Proc Natl Acad Sci. 2007;104:15941 LP–15946. https://doi.org/10.1073/pnas.0707246104.

Adachi T, Aonuma Y, Tanaka M, Hojo M, Takano-Yamamoto T, Kamioka H. Calcium response in single osteocytes to locally applied mechanical stimulus: differences in cell process and cell body. J Biomech. 2009;42:1989–95. https://doi.org/10.1016/j.jbiomech.2009.04.034.

Article  PubMed  Google Scholar 

Zhang K, Barragan-Adjemian C, Ye L, Kotha S, Dallas M, Lu Y, Zhao S, Harris M, Harris SE, Feng JQ. E11/gp38 selective expression in osteocytes: regulation by mechanical strain and role in dendrite elongation. Mol Cell Biol. 2006;26:4539–52.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Holmbeck K, Bianco P, Pidoux I, Inoue S, Billinghurst RC, Wu W, Chrysovergis K, Yamada S, Birkedal-Hansen H, Poole AR. The metalloproteinase MT1-MMP is required for normal development and maintenance of osteocyte processes in bone. J Cell Sci. 2005;118:147–56.

Article  CAS  PubMed  Google Scholar 

Inoue K, Mikuni-Takagaki Y, Oikawa K, Itoh T, Inada M, Noguchi T, Park J-S, Onodera T, Krane SM, Noda M. A crucial role for matrix metalloproteinase 2 in osteocytic canalicular formation and bone metabolism. J Biol Chem. 2006;281:33814–24.

Article  CAS  PubMed  Google Scholar 

Bloch SL, Kristensen SL, Sørensen MS. The viability of perilabyrinthine osteocytes: a quantitative study using bulk-stained undecalcified human temporal bones. Anat Rec Adv Integr Anat Evol Biol. 2012;295:1101–8.

Article  Google Scholar 

Verbruggen SW, McNamara LM. Bone mechanobiology in health and disease. Mechanobiol Heal Dis. 2018: 157–214. https://doi.org/10.1016/B978-0-12-812952-4.00006-4.

Duffy MP, Jacobs CR. Seeing the unseen: cell strain and mechanosensing. Biophys J. 2015;108:1583–4.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Piekarski K, Munro M. Transport mechanism operating between blood supply and osteocytes in long bones. Nature. 1977;269:80–2.

Article  CAS  PubMed  Google Scholar 

Liu C, Zhao Y, Cheung W-Y, Gandhi R, Wang L, You L. Effects of cyclic hydraulic pressure on osteocytes. Bone. 2010;46:1449–56. https://doi.org/10.1016/j.bone.2010.02.006.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Adachi T, Aonuma Y, Ito S-I, Tanaka M, Hojo M, Takano-Yamamoto T, Kamioka H. Osteocyte calcium signaling response to bone matrix deformation. J Biomech. 2009;42:2507–2512. https://doi.org/10.1016/j.jbiomech.2009.07.006.

Fritton SP, McLeod KJ, Rubin CT. Quantifying the strain history of bone: spatial uniformity and self-similarity of low-magnitude strains. J Biomech. 2000;33:317–25.

Article  CAS  PubMed  Google Scholar 

You J, Yellowley CE, Donahue HJ, Zhang Y, Chen Q, Jacobs CR. Substrate deformation levels associated with routine physical activity are less stimulatory to bone cells relative to loading-induced oscillatory fluid flow. J Biomech Eng. 2000;122:387–93. https://doi.org/10.1115/1.1287161.

Article  CAS  PubMed  Google Scholar 

Nicolella DP, Nicholls AE, Lankford J, Davy DT. Machine vision photogrammetry: a technique for measurement of microstructural strain in cortical bone. J Biomech. 2001;34:135–9. https://doi.org/10.1016/S0021-9290(00)00163-9.

Article  CAS  PubMed  Google Scholar 

Verbruggen SW, Vaughan TJ, McNamara LM. Strain amplification in bone mechanobiology: a computational investigation of the in vivo mechanics of osteocytes. J R Soc Interface. 2012;9:2735–44. https://doi.org/10.1098/rsif.2012.0286.

Article  PubMed  PubMed Central  Google Scholar 

Verbruggen SW, Vaughan TJ, McNamara LM. Fluid flow in the osteocyte mechanical environment: a fluid-structure interaction approach. Biomech Model Mechanobiol. 2014;13:85–97. https://doi.org/10.1007/s10237-013-0487-y.

Article  PubMed  Google Scholar 

Verbruggen SW, Mc Garrigle MJ, Haugh MG, Voisin MC, McNamara LM. Altered mechanical environment of bone cells in an animal model of short- and long-term osteoporosis. Biophys J. 2015;108:1587–98. https://doi.org/10.1016/j.bpj.2015.02.031.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zimmermann KW. Beiträge zur Kenntniss einiger drüsen und epithelien. Arch Mikr Anat. 1898;52:552–706.

Federman M, Nichols G. Bone cell cilia: vestigial or functional organelles? Calcif Tissue Res. 1974;17:81–5.

Article  CAS  PubMed  Google Scholar 

Temiyasathit S, Jacobs CR. Osteocyte primary cilium and its role in bone mechanotransduction. Ann NY Acad Sci. 2010;1192:422–8.

Article  CAS  PubMed  Google Scholar 

Schwartz EA, Leonard ML, Bizios R, Bowser SS. Analysis and modeling of the primary cilium bending response to fluid shear. Am J Physiol Physiol. 1997;272:F132–8.

Article  CAS  Google Scholar 

Qin L, Liu W, Cao H, Xiao G. Molecular mechanosensors in osteocytes. Bone Res. 2020;8. https://doi.org/10.1038/s41413-020-0099-y.

Vaughan TJ, Mullen CA, Verbruggen SW, McNamara LM. Bone cell mechanosensation of fluid flow stimulation: a fluid–structure interaction model characterising the role integrin attachments and primary cilia. Biomech Model Mechanobiol. 2015;14:703–18. https://doi.org/10.1007/s10237-014-0631-3.

Article  CAS  PubMed  Google Scholar 

Delaine-Smith RM, Sittichokechaiwut A, Reilly GC. Primary cilia respond to fluid shear stress and mediate flow-induced calcium deposition in osteoblasts. FASEB J. 2014;28:430–9. https://doi.org/10.1096/fj.13-231894.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kobayashi T, Dynlacht BD. Regulating the transition from centriole to basal body. J Cell Biol. 2011;193:435–44.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lucker BF, Miller MS, Dziedzic SA, Blackmarr PT, Cole DG. Direct interactions of intraflagellar transport complex B proteins IFT88, IFT52, and IFT46. J Biol Chem. 2010;285:21508–18.

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif