Blockage of PHLPP1 protects against myocardial ischemia/reperfusion injury in diabetic mice via activation of STAT3 signaling

Andreozzi F, Procopio C et al (2011) Increased levels of the Akt-specific phosphatase PH domain leucine-rich repeat protein phosphatase (PHLPP)-1 in obese participants are associated with insulin resistance. Diabetologia 54(7):1879–1887. https://doi.org/10.1007/s00125-011-2116-6

Article  CAS  PubMed  Google Scholar 

Baffi TR, Cohen-Katsenelson K et al (2021) PHLPPing the script: emerging roles of PHLPP phosphatases in cell signaling. Annu Rev Pharmacol Toxicol 61:723–743. https://doi.org/10.1146/annurev-pharmtox-031820-122108

Article  CAS  PubMed  Google Scholar 

Candas D, Li JJ (2014) MnSOD in oxidative stress response-potential regulation via mitochondrial protein influx. Antioxid Redox Signal 20(10):1599–1617. https://doi.org/10.1089/ars.2013.5305

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cohen KK, Stender JD et al (2019) PHLPP1 counter-regulates STAT1-mediated inflammatory signaling. Elife 8. https://doi.org/10.7554/eLife.48609

Comita S, Femmino S et al (2021) Regulation of STAT3 and its role in cardioprotection by conditioning: focus on non-genomic roles targeting mitochondrial function. Basic Res Cardiol 116(1):56. https://doi.org/10.1007/s00395-021-00898-0

Article  CAS  PubMed  PubMed Central  Google Scholar 

Davidson SM, Ferdinandy P et al (2019) Multitarget strategies to reduce myocardial ischemia/reperfusion injury: JACC review topic of the week. J Am Coll Cardiol 73(1):89–99. https://doi.org/10.1016/j.jacc.2018.09.086

Article  PubMed  Google Scholar 

Einarson TR, Acs A et al (2018) Prevalence of cardiovascular disease in type 2 diabetes: a systematic literature review of scientific evidence from across the world in 2007–2017. Cardiovasc Diabetol 17(1):83. https://doi.org/10.1186/s12933-018-0728-6

Article  PubMed  PubMed Central  Google Scholar 

Gallo S, Spilinga M et al (2020) Activation of the MET receptor attenuates doxorubicin-induced cardiotoxicity in vivo and in vitro. Br J Pharmacol 177(13):3107–3122. https://doi.org/10.1111/bph.15039

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gao T, Furnari F et al (2005) PHLPP: a phosphatase that directly dephosphorylates Akt, promotes apoptosis, and suppresses tumor growth. Mol Cell 18(1):13–24. https://doi.org/10.1016/j.molcel.2005.03.008

Article  CAS  PubMed  Google Scholar 

Gao S, Wang R et al (2021) Inactivation of TOPK caused by hyperglycemia blocks diabetic heart sensitivity to sevoflurane postconditioning by impairing the PTEN/PI3K/Akt signaling. Oxid Med Cell Longev 2021(6657529). https://doi.org/10.1155/2021/6657529

Gao S, Yang Z et al (2016) Diabetes blocks the cardioprotective effects of sevoflurane postconditioning by impairing Nrf2/Brg1/HO-1 signaling. Eur J Pharmacol 779:111–121. https://doi.org/10.1016/j.ejphar.2016.03.018

Article  CAS  PubMed  Google Scholar 

Gao S, Zhan L et al (2017) Remote limb ischaemic postconditioning protects against myocardial ischaemia/reperfusion injury in mice: activation of JAK/STAT3-mediated Nrf2-antioxidant signalling. Cell Physiol Biochem 43(3):1140–1151. https://doi.org/10.1159/000481755

Article  CAS  PubMed  Google Scholar 

Garama DJ, White CL et al (2016) Mitochondrial STAT3: powering up a potent factor. Cytokine 87:20–25. https://doi.org/10.1016/j.cyto.2016.05.019

Article  CAS  PubMed  Google Scholar 

Han X, Guo X et al (2022) Integrinbeta3 mediates the protective effects of soluble receptor for advanced glycation end-products during myocardial ischemia/reperfusion through AKT/STAT3 signaling pathway. Apoptosis 27(5–6):354–367. https://doi.org/10.1007/s10495-022-01724-1

Article  CAS  PubMed  Google Scholar 

Harhous Z, Booz GW et al (2019) An update on the multifaceted roles of STAT3 in the heart. Front Cardiovasc Med 6(150):150. https://doi.org/10.3389/fcvm.2019.00150

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lecour S (2009) Activation of the protective survivor activating factor enhancement (SAFE) pathway against reperfusion injury: does it go beyond the RISK pathway? J Mol Cell Cardiol 47(1):32–40. https://doi.org/10.1016/j.yjmcc.2009.03.019

Article  CAS  PubMed  Google Scholar 

Lemoine KA, Fassas JM et al (2021) On the PHLPPside: emerging roles of PHLPP phosphatases in the heart. Cell Signal 86(110097):110097. https://doi.org/10.1016/j.cellsig.2021.110097

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li J, Zhu X et al (2023) A cell-penetrating PHLPP peptide improves cardiac arrest survival in murine and swine models. J Clin Invest 133(9):e164283. https://doi.org/10.1172/JCI164283

Article  PubMed  PubMed Central  Google Scholar 

Lorden G, Lam AJ et al (2022) PHLPP signaling in immune cells. Curr Top Microbiol Immunol 436:117–143. https://doi.org/10.1007/978-3-031-06566-85

Article  PubMed  Google Scholar 

Mahdiani S, Omidkhoda N et al (2022) Induction of JAK2/STAT3 pathway contributes to protective effects of different therapeutics against myocardial ischemia/reperfusion. Biomed Pharmacother 155(113751):113751. https://doi.org/10.1016/j.biopha.2022.113751

Article  CAS  PubMed  Google Scholar 

Martinou JC, Youle RJ (2011) Mitochondria in apoptosis: Bcl-2 family members and mitochondrial dynamics. Dev Cell 21(1):92–101. https://doi.org/10.1016/j.devcel.2011.06.017

Article  CAS  PubMed  PubMed Central  Google Scholar 

Miyamoto S, Purcell NH et al (2010) PHLPP-1 negatively regulates Akt activity and survival in the heart. Circ Res 107(4):476–484. https://doi.org/10.1161/CIRCRESAHA.109.215020

Article  CAS  PubMed  PubMed Central  Google Scholar 

Morciano G, Pedriali G et al (2016) Intersection of mitochondrial fission and fusion machinery with apoptotic pathways: role of Mcl-1. Biol Cell 108(10):279–293. https://doi.org/10.1111/boc.201600019

Article  CAS  PubMed  Google Scholar 

Penna C, Perrelli MG et al (2013) Mitochondrial pathways, permeability transition pore, and redox signaling in cardioprotection: therapeutic implications. Antioxid Redox Signal 18(5):556–599. https://doi.org/10.1089/ars.2011.4459

Article  CAS  PubMed  Google Scholar 

Pipicz M, Demjan V et al (2018) Effects of cardiovascular risk factors on cardiac STAT3. Int J Mol Sci 19(11):3572. https://doi.org/10.3390/ijms19113572

Article  CAS  PubMed  PubMed Central  Google Scholar 

Qiu Y, Meng Y et al (2022) Hyperglycemia-induced overexpression of PH Domain leucine-rich repeat protein phosphatase 1 (PHLPP1) compromises the cardioprotective effect of ischemic postconditioning via modulation of the Akt/Mst1 pathway signaling. Cardiovasc Drugs Ther. https://doi.org/10.1007/s10557-022-07349-5

Article  PubMed  Google Scholar 

Robichaux DJ, Harata M et al (2023) Mitochondrial permeability transition pore-dependent necrosis. J Mol Cell Cardiol 174:47–55. https://doi.org/10.1016/j.yjmcc.2022.11.003

Article  CAS  PubMed  Google Scholar 

Sawashita Y, Hirata N et al (2020) Remote ischemic preconditioning reduces myocardial ischemia-reperfusion injury through unacylated ghrelin-induced activation of the JAK/STAT pathway. Basic Res Cardiol 115(4):50. https://doi.org/10.1007/s00395-020-0809-z

Article  PubMed  Google Scholar 

Suleman N, Somers S et al (2008) Dual activation of STAT-3 and Akt is required during the trigger phase of ischaemic preconditioning. Cardiovasc Res 79(1):127–133. https://doi.org/10.1093/cvr/cvn067

Article  CAS  PubMed  Google Scholar 

Tsao CW, Aday AW et al (2023) Heart disease and stroke statistics-2023 update: a report from the American Heart Association. Circulation 147(8):e93–e621. https://doi.org/10.1161/CIR.0000000000001123

Article  PubMed  Google Scholar 

Turer AT, Hill JA (2010) Pathogenesis of myocardial ischemia-reperfusion injury and rationale for therapy. Am J Cardiol 106(3):360–368. https://doi.org/10.1016/j.amjcard.2010.03.032

Article  PubMed  PubMed Central  Google Scholar 

Wegrzyn J, Potla R et al (2009) Function of mitochondrial Stat3 in cellular respiration. Science 323(5915):793–797. https://doi.org/10.1126/science.1164551

Article  CAS  PubMed  PubMed Central  Google Scholar 

Werfel S, Jungmann A et al (2014) Rapid and highly efficient inducible cardiac gene knockout in adult mice using AAV-mediated expression of Cre recombinase. Cardiovasc Res 104(1):15–23. https://doi.org/10.1093/cvr/cvu174

Article  CAS  PubMed  Google Scholar 

Zouein FA, Altara R et al (2015) Pivotal importance of STAT3 in protecting the heart from acute and chronic stress: new advancement and unresolved issues. Front Cardiovasc Med 2(36). https://doi.org/10.3389/fcvm.2015.00036

留言 (0)

沒有登入
gif