Role of the Peripheral Nervous System in Skeletal Development and Regeneration: Controversies and Clinical Implications

Wan Q-Q, Qin W-P, Ma Y-X, Shen M-J, Li J, Zhang Z-B, et al. Crosstalk between bone and nerves within bone. Adv Sci (Weinh). 2021;8:2003390.

Article  CAS  PubMed  Google Scholar 

Maryanovich M, Takeishi S, Frenette PS. Neural regulation of bone and bone marrow. Cold Spring Harb Perspect Med. 2018;8(9):a031344. https://doi.org/10.1101/cshperspect.a031344.

Kacena MA, White FA. No pain, no gain: will migraine therapies increase bone loss and impair fracture healing? EBioMedicine. 2020;60: 103025.

Article  PubMed  PubMed Central  Google Scholar 

• Lorenz MR, Brazill JM, Beeve AT, Shen I, Scheller EL. A neuroskeletal atlas: spatial mapping and contextualization of axon subtypes innervating the long bones of C3H and B6 mice. J Bone Miner Res. 2021;36:1012–25. This paper maps the sensory and sympathetic innervation of mouse long bone and provides full thickness reference atlases that relate patterns of innervation to the surrounding muscle. Three unique neuroskeletal niches within the periosteum are also defined.

Article  PubMed  Google Scholar 

Castañeda-Corral G, Jimenez-Andrade JM, Bloom AP, Taylor RN, Mantyh WG, Kaczmarska MJ, et al. The majority of myelinated and unmyelinated sensory nerve fibers that innervate bone express the tropomyosin receptor kinase A. Neuroscience. 2011;178:196–207.

Article  PubMed  Google Scholar 

Sayilekshmy M, Hansen RB, Delaissé J-M, Rolighed L, Andersen TL, Heegaard A-M. Innervation is higher above bone remodeling surfaces and in cortical pores in human bone: lessons from patients with primary hyperparathyroidism. Sci Rep. 2019;9:5361.

Article  PubMed  PubMed Central  Google Scholar 

• Steverink JG, Oostinga D, van Tol FR, van Rijen MHP, Mackaaij C, Verlinde-Schellekens SAMW, et al. Sensory innervation of human bone: an immunohistochemical study to further understand bone pain. J Pain. 2021;22:1385–95. The authors aimed to quantify sensory nerve fiber density in different anatomical locations of human bones using immunohistochemistry and confocal microscopy. They reported that the distribution of the sensory nerve fibers varied across different bone locations; however, there was no difference across genders.

Sisask G, Silfverswärd CJ, Bjurholm A, Nilsson O. Ontogeny of sensory and autonomic nerves in the developing mouse skeleton. Auton Neurosci. 2013;177:237–43.

Article  CAS  PubMed  Google Scholar 

•• Thai J, Kyloh M, Travis L, Spencer NJ, Ivanusic JJ. Identifying spinal afferent (sensory) nerve endings that innervate the marrow cavity and periosteum using anterograde tracing. J Comp Neurol. 2020;528:1903–16. This paper uses a unique approach to trace nerves from the dorsal root ganglia to the bone. This provides an unbiased identification of sensory nerve subtypes in skeletal tissues and shows that the unique TH+ sensory afferent population is not present in bone.

Article  CAS  PubMed  Google Scholar 

•• Utagawa K, Shin T, Yamada H, Ochi H, Sunamura S, Unno A, et al. Three-dimensional visualization of neural networks inside bone by Osteo-DISCO protocol and alteration of bone remodeling by surgical nerve ablation. Sci Rep. 2023;13:4674. This paperuses tissue clearing techniques to provide a beautiful view of the relatively sparse neural network in the whole bone marrow, which is otherwise difficult to appreciate using sectioning-based techniques. It also explores the role of ultra-local surgical denervation on bone homeostasis.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brazill JM, Beeve AT, Craft CS, Ivanusic JJ, Scheller EL. Nerves in bone: evolving concepts in pain and anabolism. J Bone Miner Res. 2019;34:1393–406.

Article  PubMed  Google Scholar 

Sisask G, Bjurholm A, Ahmed M, Kreicbergs A. Ontogeny of sensory nerves in the developing skeleton. Anat Rec. 1995;243:234–40.

Article  CAS  PubMed  Google Scholar 

Tomlinson RE, Li Z, Zhang Q, Goh BC, Li Z, Thorek DLJ, et al. NGF-TrkA signaling by sensory nerves coordinates the vascularization and ossification of developing endochondral bone. Cell Rep. 2016;16:2723–35.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang L, Mongera A, Bonanomi D, Cyganek L, Pfaff SL, Nüsslein-Volhard C, et al. A conserved axon type hierarchy governing peripheral nerve assembly. Development. 2014;141:1875–83.

Article  CAS  PubMed  Google Scholar 

Kosaras B, Jakubowski M, Kainz V, Burstein R. Sensory innervation of the calvarial bones of the mouse. J Comp Neurol. 2009;515:331–48.

PubMed  PubMed Central  Google Scholar 

Alberius P, Skagerberg G. Adrenergic innervation of the calvarium of the neonatal rat. Its relationship to the sagittal suture and developing parietal bones. Anat Embryol. 1990;182:493–8.

Article  CAS  Google Scholar 

Nencini S, Ivanusic JJ. The physiology of bone pain. How much do we really know? Front Physiol. 2016;7:157.

Article  PubMed  PubMed Central  Google Scholar 

Mantyh PW. Mechanisms that drive bone pain across the lifespan. Br J Clin Pharmacol. 2019;85:1103–13.

Article  PubMed  Google Scholar 

Zeisel A, Hochgerner H, Lönnerberg P, Johnsson A, Memic F, van der Zwan J, et al. Molecular architecture of the mouse nervous system. Cell. 2018;174:999-1014.e22.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Usoskin D, Furlan A, Islam S, Abdo H, Lönnerberg P, Lou D, et al. Unbiased classification of sensory neuron types by large-scale single-cell RNA sequencing. Nat Neurosci. 2015;18:145–53.

Article  CAS  PubMed  Google Scholar 

Yasui M, Shiraishi Y, Ozaki N, Hayashi K, Hori K, Ichiyanagi M, et al. Nerve growth factor and associated nerve sprouting contribute to local mechanical hyperalgesia in a rat model of bone injury. Eur J Pain. 2012;16:953–65.

Article  CAS  PubMed  Google Scholar 

Mitchell SAT, Majuta LA, Mantyh PW. New insights in understanding and treating bone fracture pain. Curr Osteoporos Rep. 2018;16:325–32.

Article  PubMed  PubMed Central  Google Scholar 

Jimenez-Andrade JM, Bloom AP, Mantyh WG, Koewler NJ, Freeman KT, Delong D, et al. Capsaicin-sensitive sensory nerve fibers contribute to the generation and maintenance of skeletal fracture pain. Neuroscience. 2009;162:1244–54.

Article  CAS  PubMed  Google Scholar 

Lee S, Hwang C, Marini S, Tower RJ, Qin Q, Negri S, et al. NGF-TrkA signaling dictates neural ingrowth and aberrant osteochondral differentiation after soft tissue trauma. Nat Commun. 2021;12:4939.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chartier SR, Mitchell SA, Majuta LA, Mantyh PW. Immunohistochemical localization of nerve growth factor, tropomyosin receptor kinase A, and p75 in the bone and articular cartilage of the mouse femur. Mol Pain. 2017;13:1744806917745465.

Article  CAS  PubMed  PubMed Central  Google Scholar 

•Meyers CA, Lee S, Sono T, Xu J, Negri S, Tian Y, et al. A neurotrophic mechanism directs sensory nerve transit in cranial bone. Cell Rep. 2020;31:107696. Using a cranial defect model, the authors highlighted the role of NGF-expressing cells during intramembranous bone regeneration. The inhibition of the NGF signaling pathway negatively affected the re-innervation and skeletal healing.

Li Z, Meyers CA, Chang L, Lee S, Li Z, Tomlinson R, et al. Fracture repair requires TrkA signaling by skeletal sensory nerves. J Clin Invest. 2019;129:5137–50.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Asaumi K, Nakanishi T, Asahara H, Inoue H, Takigawa M. Expression of neurotrophins and their receptors (TRK) during fracture healing. Bone. 2000;26:625–33.

Article  CAS  PubMed  Google Scholar 

Aiga A, Asaumi K, Lee Y-J, Kadota H, Mitani S, Ozaki T, et al. Expression of neurotrophins and their receptors tropomyosin-related kinases (Trk) under tension-stress during distraction osteogenesis. Acta Med Okayama. 2006;60:267–77.

CAS  PubMed  Google Scholar 

Cantarella G, Lempereur L, Presta M, Ribatti D, Lombardo G, Lazarovici P, et al. Nerve growth factor-endothelial cell interaction leads to angiogenesis in vitro and in vivo. FASEB J. 2002;16:1307–9.

Article  CAS  PubMed  Google Scholar 

Zhu S, Zhu J, Zhen G, Hu Y, An S, Li Y, et al. Subchondral bone osteoclasts induce sensory innervation and osteoarthritis pain. J Clin Invest. 2019;129:1076–93.

Article  PubMed  PubMed Central  Google Scholar 

Kenan S, Onur ÖD, Solakoğlu S, Kotil T, Ramazanoğlu M, Çelik HH, et al. Investigation of the effects of semaphorin 3A on new bone formation in a rat calvarial defect model. J Craniomaxillofac Surg. 2019;47:473–83.

Article  PubMed  Google Scholar 

Tear G. Molecular cues that guide the development of neural connectivity. Essays Biochem. 1998;33:1–13.

Article  CAS  PubMed  Google Scholar 

McDonald AC, Schuijers JA, Shen P-J, Gundlach AL, Grills BL. Expression of galanin and galanin receptor-1 in normal bone and during fracture repair in the rat. Bone. 2003;33:788–97.

Article  CAS  PubMed  Google Scholar 

Park KW, Crouse D, Lee M, Karnik SK, Sorensen LK, Murphy KJ, et al. The axonal attractant netrin-1 is an angiogenic factor. Proc Natl Acad Sci USA. 2004;101:16210–5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zheng S, Li W, Xu M, Bai X, Zhou Z, Han J, et al. Calcitonin gene-related peptide promotes angiogenesis via AMP-activated protein kinase. Am J Physiol, Cell Physiol. 2010;299:C1485–92.

Article  CAS  PubMed  Google Scholar 

Li J, Kreicbergs A, Bergström J, Stark A, Ahmed M. Site-specific CGRP innervation coincides with bone formation during fracture healing and modeling: a study in rat angulated tibia. J Orthop Res. 2007;25:1204–12.

Article  PubMed  Google Scholar 

Long H, Ahmed M, Ackermann P, Stark A, Li J. Neuropeptide Y innervation during fracture healing and remodeling. A study of angulated tibial fractures in the rat. Acta Orthop. 2010;81:639–46.

Article  PubMed  PubMed Central 

留言 (0)

沒有登入
gif