Distortion Product Otoacoustic Emissions in Mice Above and Below the Eliciting Primaries

Kim DO (1980) Cochlear mechanics: implications of electrophysiological and acoustical observations. Hear Res 2(3–4):297–317. PubMed PMID: 7410234

Article  CAS  PubMed  Google Scholar 

Siegel J (2008) Otoacoustic emissions. In: Basbaum AI, Kaneko A, Shepherd G, Westheimer G (eds) The Senses: A Comprehensive Reference. Academic Press, San Diego, pp 237–262

Chapter  Google Scholar 

Lonsbury-Martin BL, Martin GK (2008) Otoacoustic emissions: Basic studies in mammalian models. In: Manley G, Fay R, Popper A (eds) Active Processes and Otoacoustic Emissions. Springer, New York NY, pp 261–303

Google Scholar 

Zheng J, Shen W, He DZ, Long KB, Madison LD, Dallos P (2000) Prestin is the motor protein of cochlear outer hair cells. Nature 405(6783):149–155. PubMed PMID: 10821263

Article  CAS  PubMed  Google Scholar 

Dallos P, Wu X, Cheatham MA, Gao J, Zheng J, Anderson CT, Jia S, Wang X, W.H.Y. C, Sengupta S, He DZZ, Zuo J (2008) Prestin-based outer hair cell motility is necessary for mammalian cochlear amplification. Neuron 58:1–7

Liberman MC, Gao J, He DZ, Wu X, Jia S, Zuo J (2022) Prestin is required for electromotility of the outer hair cell and for the cochlear amplifier. Nature 419(6904):300–304. Epub 2002/09/20. https://doi.org/10.1038/nature01059. PubMed PMID: 12239568

Cheatham MA, Huynh KH, Gao J, Zuo J, Dallos P (2004) Cochlear function in Prestin knockout mice. J Physiol 560(Pt 3):821–830. PubMed PMID: 15319415

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dallos P, Wang CY (1974) Bioelectric correlates of kanamycin intoxication. Audiology 13(4):277–289. PubMed PMID: 4606272

Article  CAS  PubMed  Google Scholar 

Ryan A, Dallos P (1975) Effect of absence of cochlear outer hair cells on behavioural auditory threshold. Nature 253(5486):44–46. PubMed PMID: 1110747

Article  CAS  PubMed  Google Scholar 

Brown AM, McDowell B, Forge A (1989) Acoustic distortion products can be used to monitor the effects of chronic gentamicin treatment. Hear Res 42:143–156

Article  CAS  PubMed  Google Scholar 

Legan PK, Lukashkina VA, Goodyear RJ, Kossi M, Russell IJ, Richardson GP (2000) A targeted deletion in alpha-tectorin reveals that the tectorial membrane is required for the gain and timing of cochlear feedback. Neuron 28(1):273–285. PubMed PMID: 11087000

Article  CAS  PubMed  Google Scholar 

Liberman MC, Zuo J, Guinan JJ Jr (2004) Otoacoustic emissions without somatic motility: can stereocilia mechanics drive the mammalian cochlea? J Acoust Soc Am 116(3):1649–1655. PubMed PMID: 15478431

Article  CAS  PubMed  Google Scholar 

Jaramillo F, Markin VS, Hudspeth AJ (1993) Auditory illusions and the single hair cell. Nature 364(6437):527–529. PubMed PMID: 8336792

Article  CAS  PubMed  Google Scholar 

Cheatham MA (2021) Spontaneous otoacoustic emissions are biomakers for mice with tectorial membrane defects. Hear Res 409:108314

Article  PubMed  PubMed Central  Google Scholar 

Richardson GP, Lukashkin AN, Russell IJ (2008) The tectorial membrane: one slice of a complex cochlear sandwich. Curr Opin Otolaryngo 16(5):458–464. https://doi.org/10.1097/MOO.0b013e32830e20c4.PubMedPMID:WOS:000262716300011

Article  Google Scholar 

Cheatham MA, Goodyear RJ, Homma K, Legan PK, Korchagina J, Naskar S, Siegel JH, Dallos P, Zheng J, Richardson GP (2014) Loss of the tectorial membrane protein CEACAM16 enhances spontaneous, stimulus-frequency, and transiently evoked otoacoustic emissions. J Neurosci 34(31):10325–10338. https://doi.org/10.1523/JNEUROSCI.1256-14.2014. PubMedPMID: 25080593; PMCID: PMC4115139

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cheatham MA, Zhou Y, Goodyear RJ, Dallos P, Richardson GP (2018) Spontaneous Otoacoustic Emissions in Tecta(Y1870C/+) Mice Reflect Changes in Cochlear Amplification and How It Is Controlled by the Tectorial Membrane. eNeuro 5(6):314–318. Epub 2019/01/11. https://doi.org/10.1523/ENEURO.0314-18.2018. PubMed PMID: 30627650; PMCID: PMC6325554

Legan PK, Lukashkina VA, Goodyear RJ, Lukashkin AN, Verhoeven K, Van Camp G, Russell IJ, Richardson GP (2005) A deafness mutation isolates a second role for the tectorial membrane in hearing. Nat Neurosci 8(8):1035–1042. https://doi.org/10.1038/nn1496. PubMed PMID: 15995703

Article  CAS  PubMed  Google Scholar 

Russell IJ, Legan PK, Lukashkina VA, Lukashkin AN, Goodyear RJ, Richardson GP (2007) Sharpened cochlear tuning in a mouse with a genetically modified tectorial membrane. Nat Neurosci 10(2):215–223. Epub 2007/01/16. https://doi.org/10.1038/nn1828. PubMed PMID: 17220887; PMCID: PMC3388746

Neely SR, Stevenson R (1992) Tech Memo No. 1. Omaha NE: Boys Town National Research Hospital

Neely S, Liu Z (1994) EMAV: otoacoustic emission averager. Boys Town National Research Hospital, Omaha NE

Goodyear RJ, Cheatham MA, Naskar S, Zhou Y, Osgood RT, Zheng J, Richardson GP (2019) Accelerated age-related degradtion of the tectorial membrane in the Ceacam16 βgal/βgal null mutant mouse, a model for late-onset human hereditary deafenss DFNB113. Front Mol Neurosci 12:147

Cheatham MA, Edge RM, Homma K, Leserman EL, Dallos P, Zheng J (2015) Prestin-dependence of outer hair cell survival and partial rescue of outer hair cell loss in Prestin V499G/Y501H knockin mice. PLoS ONE e0145428

Wilson H, Lutman M (2006) Mechanisms of generation of the 2f2-f1 distortion product otoacoustic emission in humans. J Acoust Soc Am 120

Botti T, Sisto R, Sanjust F, Moleti A, D'Amato L (2016) Distortion product otoacoustic emission generation mechanisms and their dependence on stimulus level and primary frequency ratio. J Acoustic Soc Am 139(2):658–673. PubMed PMID: Medline: 26936550

Zurek P, Clarke W (1981) Narrow-band acoustic signals emitted by chinchilla ears after noise exposure. J Acoust Soc Am 70:446–480

Article  Google Scholar 

Cheatham MA, Naik K, Siegel JH, Dallos P (2011) Intermodulation DPOAEs in mice below and above the eliciting primaries. Abs Assoc Res Otolaryngol 33

Kemp D (2002) Otoacoustic emissions, their origin in cochlear function, and use. Br Med Bull 63:223–241

Article  PubMed  Google Scholar 

Jia S, He DZZ (2005) Motility-associated hair-bundle motion in mammalian outer hair cells. Nat Neurosci 8:1028–1034

Article  CAS  PubMed  Google Scholar 

Takahashi S, Santos-Sacchi J (1999) Distortion component analysis of outer hair cell motility-related gating charge. J Membr Biol 169(3):199–207. PubMed PMID: 10354466

Article  CAS  PubMed  Google Scholar 

Santos-Sacchi J (1993) Harmonics of outer hair cell motility. Biophys J 65(5):2217–2227. PubMed PMID: 8298045

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim DO, Molnar CE, Matthews JW (1980) Cochlear mechanics: nonlinear behavior in two-tone responses as reflected in cochlear-nerve-fiber responses and in ear-canal sound pressure. J Acoust Soc Am 67(5):1704–1721. PubMed PMID: 7372925

Article  CAS  PubMed  Google Scholar 

Hall JL (1980) Cochlear models: Evidence in suppression of mechanical nonlinearities and a second filter (A review). Hear Res 2:455–464

Article  CAS  PubMed  Google Scholar 

Ren T (2004) Reverse propagation of sound in the gerbil cochlea. Nat Neurosci 7:333–334

Article  CAS  PubMed  Google Scholar 

Brown A, Kemp D (1985) Intermodulation distortion in the cochlea: could basal vibration be the major cause of round window CM distortion? Hear Res 19:191–198

Article  CAS  PubMed  Google Scholar 

Kemp D (1986) Otoacoustic emissions, travelling waves and cochlear mechanisms. Hear Res 22:95–104

Article  CAS  PubMed  Google Scholar 

Shera CA, Guinan JJ Jr (1999) Evoked otoacoustic emissions arise by two fundamentally different mechanisms: a taxonomy for mammalian OAEs. J Acoust Soc Am 105(2 Pt 1):782–798. PubMed PMID: 9972564

Article  CAS  PubMed  Google Scholar 

Knight RD, Kemp DT (2000) Indications of different distortion product otoacoustic emission mechnaisms from a detailed f1, f2 area study. J Acoust Soc Am 107:457–473

Article  CAS  PubMed  Google Scholar 

Dong W, Olson E (2008) Supporting evidence for reverse cochlear traveling waves. J Acoust Soc Am 123:222–240

Article  CAS  PubMed  Google Scholar 

Wen H, Bowling T, Meaud J (2018) Investigation of the 2f1-f2 and 2f2-f1 distortion product otoacoustic emissions using a computational model of the gerbil ear. Hear Res 365:127–140

Article  PubMed  Google Scholar 

Martin GK, Stagner B, Lonsbury-Martin B (2010) Evidence for basal distortion-product otoacoustic emission compnents. J Acoust Soc Am 127:2955–2972

Article  PubMed  PubMed Central  Google Scholar 

Martin GK, Lonsbury-Martin BL, Probst R, Scheinin S, Coats A (1987) Acoustic distortion products in rabbit ear canal. II Sites of origin revealed by suppression contours and pure-tone exposures. Hear Res 28

Knight RD, Kemp DT (2001) Wave and place fixed DPOAE maps of the human ear. J Acoust Soc Am 109:1513–1525

Article  CAS  PubMed  Google Scholar 

Martin G, Stagner B, Dong W, Lonsbury-Martin B (2016) Comparing distortion product otoacoustic emissions to intracochlear distortion products inferred from a noninvasive assay. J Assoc Res Otolaryngol 17:271–287

Article  PubMed  PubMed Central  Google Scholar 

Withnell RH, Shaffer LA, Talmadge CL (2003) Generation of DPOAEs in the guinea pig. Hear Res 178(1–2):106–117. Epub 2003/04/10. https://doi.org/10.1016/s0378-5955(03)00064-9. PubMed PMID: 12684183

Dong W, Olson ES (2010) Local cochlear damage reduces local nonlinerity and decreases generator-type cochlear emissions while increasing reflector-type emissions. J Acoust Soc Am 1422–1431

Talmadge CL, Tubis A, Long GR, Tong C (2000) Modeling the combined effects of basilar membrane nonlinearity and roughness on stimulus frequency otoacoustic emission fine structure. J Acoust Soc Am 108(6):2911–2932. Epub 2001/01/06. https://doi.org/10.1121/1.1321012. PubMed PMID: 11144584

Dhar S, Long GR, Talmadge CL, Tubis A (2005) The effect of stimulus-frequency ratio on distortion product otoacoustic emission components. J Acoust Soc Am 117:3766–3776

Bowling T, Wen H, Meenderrnk SWF, Dong W, Meaud J (2021) Intracochlear distortion products are broadly generated by outer hair cells but their contributions to otoacoustic emissions are spatially restricted. Sci Rep 11:13651

Article  CAS  PubMed  PubMed Central  Google Scholar 

Durante AS, Akhtar US, Dhar S (2022) Distortion product otoacoustic emission component behavior as a function of primary frequency ratio and primary levels. Ear Hear 43:1824–1835

Article  PubMed  Google Scholar 

Siegel JH, Cerka AJ, Recio-Spinoso A, van Dijk P, Ruggero MA (2005) Delays of stimulus-frequency otoacoustic emissions and cochlear vibrations contradict the theory of cohlerent refelction filtering. J Acoust Soc Am 118:2434–2443

Article  PubMed 

留言 (0)

沒有登入
gif