Defects in Bone and Bone Marrow in Inherited Anemias: the Chicken or the Egg

Shimamura A, Alter BP. Pathophysiology and management of inherited bone marrow failure syndromes. Blood Rev. 2010;24(3):101–22. https://doi.org/10.1016/j.blre.2010.03.002.

Article  CAS  PubMed  PubMed Central  Google Scholar 

• Vlachos A, Blanc L, Lipton JM. Diamond Blackfan anemia: a model for the translational approach to understanding human disease. Expert Rev Hematol. 2014;7(3):359–72. https://doi.org/10.1586/17474086.2014.897923. (A still timely review describing the pathophysiology of Diamond Blackfan anemia in a clinical context)

Article  CAS  PubMed  Google Scholar 

Ning S, Zeller MP. Management of iron deficiency. Hematology Am Soc Hematol Educ Program. 2019;2019(1):315–22. https://doi.org/10.1182/hematology.2019000034.

Article  PubMed  PubMed Central  Google Scholar 

Niss O, Quinn CT. Classification and diagnosis of anemia in children and neonates in Lanzkowsky's Manual of Pediatric Hematology and Oncology, Seventh ed. Fish, JD, Lipton, JM, Lanzkowsky (Eds.), Academic Press, Elsevier Inc. London, United Kingdom.

Toxqui L, Vaquero MP. Chronic iron deficiency as an emerging risk factor for osteoporosis: a hypothesis. Nutrients. 2015;7(4):2324–44. https://doi.org/10.3390/nu7042324.

Article  CAS  PubMed  PubMed Central  Google Scholar 

•• Tsiftsoglou AS. Erythropoietin (EPO) as a key regulator of erythropoiesis, bone remodeling and endothelial transdifferentiation of multipotent mesenchymal stem cells (MSCs): implications in regenerative medicine. Cells. 2021;10(8):2140. https://doi.org/10.3390/cells10082140. (Work describing the seminal observation that erythropoietin drives not only erythropoiesis but also induces osteogenic and endothelial transdifferentiation of mesenchymal stem cell through the erythropoietin receptor signaling pathways, connecting osteogenesis to erythropoiesis)

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim AR, Ulirsch JC, Wilmes S, Unal E, Moraga I, Karakukcu M, et al. Functional selectivity in cytokine signaling revealed through a pathogenic EPO mutation. Cell. 2017;168(6):1053-64.e15. https://doi.org/10.1016/j.cell.2017.02.026.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Suresh S, Lee J, Noguchi CT. Erythropoietin signaling in osteoblasts is required for normal bone formation and for bone loss during erythropoietin-stimulated erythropoiesis. FASEB J. 2020;34(9):11685–97. https://doi.org/10.1096/fj.202000888R.

Article  CAS  PubMed  Google Scholar 

Yu VW, Scadden DT. Heterogeneity of the bone marrow niche. Curr Opin Hematol. 2016;23(4):331–8. https://doi.org/10.1097/MOH.0000000000000265.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim PG, Niroula A, Shkolnik V, McConkey M, Lin AE, Słabicki M, et al. Dnmt3a-mutated clonal hematopoiesis promotes osteoporosis. J Exp Med. 2021;218(12):e20211872. https://doi.org/10.1084/jem.20211872.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Calvi LM, Link DC. The hematopoietic stem cell niche in homeostasis and disease. Blood. 2015;126(22):2443–51. https://doi.org/10.1182/blood-2015-07-533588.

Article  CAS  PubMed  PubMed Central  Google Scholar 

•• Galán-Díez M, Kousteni S. A bone marrow niche-derived molecular switch between osteogenesis and hematopoiesis. Genes Dev. 2018;32(5–6):324–6. https://doi.org/10.1101/gad.314013.118. (This study describes the mechanism by which specialized bone marrow niche cells regulates the interrelationship between osteogenesis and hematopoiesis)

Article  CAS  PubMed  PubMed Central  Google Scholar 

Aoki K, Kurashige M, Ichii M, Higaki K, Sugiyama T, Kaito T, et al. Identification of CXCL12-abundant reticular cells in human adult bone marrow. Br J Haematol. 2021;193(3):659–68. https://doi.org/10.1111/bjh.17396.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Seike M, Omatsu Y, Watanabe H, Kondoh G, Nagasawa T. Stem cell niche-specific Ebf3 maintains the bone marrow cavity. Genes Dev. 2018;32(5–6):359–72. https://doi.org/10.1101/gad.311068.117.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wong P, Fuller PJ, Gillespie MT, Milat F. Bone disease in thalassemia: a molecular and clinical overview. Endocr Rev. 2016;37(4):320–46. https://doi.org/10.1210/er.2015-1105.

Article  CAS  PubMed  Google Scholar 

• Taher AT, Musallam KM, Cappellini MD. β-thalassemias. N Engl J Med. 2021;384(8):727–43. https://doi.org/10.1056/NEJMra2021838. (This work provides a comprehensive review of the β-thalassemias)

Article  PubMed  Google Scholar 

Haidar R, Musallam KM, Taher AT. Bone disease and skeletal complications in patients with β thalassemia major. Bone. 2011;48(3):425–32. https://doi.org/10.1016/j.bone.2010.10.173.

Article  PubMed  Google Scholar 

Rund D, Rachmilewitz E. Beta-thalassemia. N Engl J Med. 2005;353(11):1135–46. https://doi.org/10.1056/NEJMra050436.

Article  CAS  PubMed  Google Scholar 

•• Castro-Mollo M, Gera S, Ruiz-Martinez M, Feola M, Gumerova A, Planoutene M, et al. The hepcidin regulator erythroferrone is a new member of the erythropoiesis-iron-bone circuitry. Elife. 2021;10:e68217. https://doi.org/10.7554/eLife.68217. (This study demonstrated a role for erythroferrone in preventing bone loss during expanded erythropoiesis in beta-thalassemia)

Article  CAS  PubMed  PubMed Central  Google Scholar 

Morabito N, Gaudio A, Lasco A, Atteritano M, Pizzoleo MA, Cincotta M, et al. Osteoprotegerin and RANKL in the pathogenesis of thalassemia-induced osteoporosis: new pieces of the puzzle. J Bone Miner Res. 2004;19(5):722–7. https://doi.org/10.1359/JBMR.040113.

Article  CAS  PubMed  Google Scholar 

Zaidi M, Kim SM, Mathew M, Korkmaz F, Sultana F, Miyashita S, et al. Bone circuitry and interorgan skeletal crosstalk. Elife. 2023;12:e83142. https://doi.org/10.7554/eLife.83142.

Article  PubMed  PubMed Central  Google Scholar 

• Bunn HF. Pathogenesis and treatment of sickle cell disease. N Engl J Med. 1997;337(11):762–9. https://doi.org/10.1056/NEJM199709113371107. (A timeless and still relevant review of the clinical manifestations of sickle cell disease by a legend in the field)

Article  CAS  PubMed  Google Scholar 

Mohandas N, Gallagher PG. Red cell membrane: past, present, and future. Blood. 2008;112(10):3939–48. https://doi.org/10.1182/blood-2008-07-161166.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vanderhave KL, Perkins CA, Scannell B, Brighton BK. Orthopaedic manifestations of sickle cell disease. J Am Acad Orthop Surg. 2018;26(3):94–101. https://doi.org/10.5435/JAAOS-D-16-00255.

Article  PubMed  Google Scholar 

DalleCarbonare L, Matte’ A, Valenti MT, Siciliano A, Mori A, Schweiger V, et al. Hypoxia-reperfusion affects osteogenic lineage and promotes sickle cell bone disease. Blood. 2015;126(20):2320–8. https://doi.org/10.1182/blood-2015-04-641969.

Article  CAS  Google Scholar 

Adesina OO, Neumayr LD. Osteonecrosis in sickle cell disease: an update on risk factors, diagnosis, and management. Hematology Am Soc Hematol Educ Program. 2019;2019(1):351–8. https://doi.org/10.1182/hematology.2019000038.

Article  PubMed  PubMed Central  Google Scholar 

Almeida A, Roberts I. Bone involvement in sickle cell disease. Br J Haematol. 2005;129(4):482–90. https://doi.org/10.1111/j.1365-2141.2005.05476.x.

Article  PubMed  Google Scholar 

Sarrai M, Duroseau H, D’Augustine J, Moktan S, Bellevue R. Bone mass density in adults with sickle cell disease. Br J Haematol. 2007;136(4):666–72. https://doi.org/10.1111/j.1365-2141.2006.06487.x.

Article  CAS  PubMed  Google Scholar 

Eskiocak Ö, Yılmaz M, İlhan G. Metabolic bone diseases in sickle cell anemia patients and evaluation of associated factors. Am J Med Sci. 2022;363(6):490–4. https://doi.org/10.1016/j.amjms.2021.07.002.

Article  PubMed  Google Scholar 

Stark Z, Savarirayan R. Osteopetrosis. Orphanet J Rare Dis. 2009;4:5. https://doi.org/10.1186/1750-1172-4-5.

Article  PubMed  PubMed Central  Google Scholar 

• Wu CC, Econs MJ, DiMeglio LA, Insogna KL, Levine MA, Orchard PJ, et al. Diagnosis and management of osteopetrosis: consensus guidelines from the Osteopetrosis Working Group. J Clin Endocrinol Metab. 2017;102(9):3111–23. https://doi.org/10.1210/jc.2017-01127. (These are important diagnostic and treatment consensus guidelines for osteopetrosis)

Article  PubMed  Google Scholar 

Roodman GD. Advances in bone biology: the osteoclast. Endocr Rev. 1996;17(4):308–32. https://doi.org/10.1210/edrv-17-4-308.

Article  CAS  PubMed  Google Scholar 

Palagano E, Menale C, Sobacchi C, Villa A. Genetics of osteopetrosis. Curr Osteoporos Rep. 2018;16(1):13–25. https://doi.org/10.1007/s11914-018-0415-2.

Article  PubMed  Google Scholar 

Sobacchi C, Schulz A, Coxon FP, Villa A, Helfrich MH. Osteopetrosis: genetics, treatment and new insights into osteoclast function. Nat Rev Endocrinol. 2013;9(9):522–36. https://doi.org/10.1038/nrendo.2013.137.

Article  CAS  PubMed  Google Scholar 

Sobacchi C, Abinun M. Osteoclast-poor osteopetrosis. Bone. 2022;164:116541. https://doi.org/10.1016/j.bone.2022.116541.

Article  CAS  PubMed  Google Scholar 

Del Fattore A, Cappariello A, Teti A. Genetics, pathogenesis and complications of osteopetrosis. Bone. 2008;42(1):19–29. https://doi.org/10.1016/j.bone.2007.08.029.

Article 

留言 (0)

沒有登入
gif