Fortune JE. Selection and maintenance of the dominant follicle: an introduction. Biol Reprod. 2001;65(3):637.
Article CAS PubMed Google Scholar
Richards JS, Russell DL, Ochsner S, Hsieh M, Doyle KH, Falender AE, et al. Novel signaling pathways that control ovarian follicular development, ovulation, and luteinization. Recent Prog Horm Res. 2002;57:195–220.
Article CAS PubMed Google Scholar
Holesh JE, Bass AN, Lord M. Physiology, Ovulation. StatPearls: Treasure Island (FL): StatPearls Publishing; 2023.
Medeiros SF, Barbosa BB, Medeiros MAS, Yamamoto MMW. Morphology and Biochemistry of Ovulation. Rev Bras Ginecol Obstet. 2021;43(6):480–6.
Matsuda F, Inoue N, Manabe N, Ohkura S. Follicular growth and atresia in mammalian ovaries: regulation by survival and death of granulosa cells. J Reprod Dev. 2012;58(1):44–50.
Article CAS PubMed Google Scholar
Adriaens I, Cortvrindt R, Smitz J. Differential FSH exposure in preantral follicle culture has marked effects on folliculogenesis and oocyte developmental competence. Hum Reprod. 2004;19(2):398–408.
Article CAS PubMed Google Scholar
Voss AK, Fortune JE. Oxytocin secretion by bovine granulosa cells: effects of stage of follicular development, gonadotropins, and coculture with theca interna. Endocrinology. 1991;128(4):1991–9.
Article CAS PubMed Google Scholar
Spicer LJ, Stewart RE. Interaction among bovine somatotropin, insulin, and gonadotropins on steroid production by bovine granulosa and thecal cells. J Dairy Sci. 1996;79(5):813–21.
Article CAS PubMed Google Scholar
Pavlik R, Wypior G, Hecht S, Papadopoulos P, Kupka M, Thaler C, et al. Induction of G protein-coupled estrogen receptor (GPER) and nuclear steroid hormone receptors by gonadotropins in human granulosa cells. Histochem Cell Biol. 2011;136(3):289–99.
Article CAS PubMed Google Scholar
Egbert JR, Fahey PG, Reimer J, Owen CM, Evsikov AV, Nikolaev VO, et al. Follicle-stimulating hormone and luteinizing hormone increase Ca2+ in the granulosa cells of mouse ovarian folliclesdagger. Biol Reprod. 2019;101(2):433–44.
Article PubMed PubMed Central Google Scholar
Ko Y, Kim JH, Lee SR, Kim SH, Chae HD. Influence of pretreatment of insulin on the phosphorylation of extracellular receptor kinase by gonadotropin-releasing hormone and gonadotropins in cultured human granulosa cells. Eur J Obstet Gynecol Reprod Biol. 2021;262:113–7.
Article CAS PubMed Google Scholar
Knight PG, Glister C. Potential local regulatory functions of inhibins, activins and follistatin in the ovary. Reproduction. 2001;121(4):503–12.
Article CAS PubMed Google Scholar
Eppig JJ, Wigglesworth K, Pendola FL. The mammalian oocyte orchestrates the rate of ovarian follicular development. Proc Natl Acad Sci USA. 2002;99(5):2890–4.
Article CAS PubMed PubMed Central Google Scholar
Rosenfeld CS, Wagner JS, Roberts RM, Lubahn DB. Intraovarian actions of oestrogen. Reproduction. 2001;122(2):215–26.
Article CAS PubMed Google Scholar
Ndiaye K, Fayad T, Silversides DW, Sirois J, Lussier JG. Identification of downregulated messenger RNAs in bovine granulosa cells of dominant follicles following stimulation with human chorionic gonadotropin. Biol Reprod. 2005;73(2):324–33.
Article CAS PubMed Google Scholar
Lussier JG, Diouf MN, Levesque V, Sirois J, Ndiaye K. Gene expression profiling of upregulated mRNAs in granulosa cells of bovine ovulatory follicles following stimulation with hCG. Reproductive biology and endocrinology : RB&E. 2017;15(1):88.
Ndiaye K, Castonguay A, Benoit G, Silversides DW, Lussier JG. Differential regulation of Janus kinase 3 (JAK3) in bovine preovulatory follicles and identification of JAK3 interacting proteins in granulosa cells. J Ovarian Res. 2016;9(1):71.
Article PubMed PubMed Central Google Scholar
Safford MG, Levenstein M, Tsifrina E, Amin S, Hawkins AL, Griffin CA, et al. JAK3: expression and mapping to chromosome 19p12–13.1. Exp Hematol. 1997;25(5):374–86.
Saharinen P, Silvennoinen O. The pseudokinase domain is required for suppression of basal activity of Jak2 and Jak3 tyrosine kinases and for cytokine-inducible activation of signal transduction. J Biol Chem. 2002;277(49):47954–63.
Article CAS PubMed Google Scholar
Yamaoka K, Saharinen P, Pesu M, Holt VE 3rd, Silvennoinen O, O’Shea JJ. The Janus kinases (Jaks). Genome Biol. 2004;5(12):253.
Article PubMed PubMed Central Google Scholar
Rane SG, Reddy EP. Janus kinases: components of multiple signaling pathways. Oncogene. 2000;19(49):5662–79.
Article CAS PubMed Google Scholar
Ihle JN, Witthuhn BA, Quelle FW, Yamamoto K, Thierfelder WE, Kreider B, et al. Signaling by the cytokine receptor superfamily: JAKs and STATs. Trends Biochem Sci. 1994;19(5):222–7.
Article CAS PubMed Google Scholar
Chiarle R, Pagano M, Inghirami G. The cyclin dependent kinase inhibitor p27 and its prognostic role in breast cancer. Breast Cancer Res. 2001;3(2):91–4.
Article CAS PubMed Google Scholar
Ito M, Yoshioka K, Akechi M, Yamashita S, Takamatsu N, Sugiyama K, et al. JSAP1, a novel jun N-terminal protein kinase (JNK)-binding protein that functions as a Scaffold factor in the JNK signaling pathway. Mol Cell Biol. 1999;19(11):7539–48.
Article CAS PubMed PubMed Central Google Scholar
Keshet Y, Seger R. The MAP kinase signaling cascades: a system of hundreds of components regulates a diverse array of physiological functions. Methods Mol Biol. 2010;661:3–38.
Article CAS PubMed Google Scholar
Huang K, Wang Y, Zhang T, He M, Sun G, Wen J, et al. JAK signaling regulates germline cyst breakdown and primordial follicle formation in mice. Biol Open. 2018;7(1):bio029470. https://doi.org/10.1242/bio.029470.
Gasperin BG, Rovani MT, Ferreira R, Ilha GF, Bordignon V, Goncalves PB, et al. Functional status of STAT3 and MAPK3/1 signaling pathways in granulosa cells during bovine follicular deviation. Theriogenology. 2015;83(3):353–9.
Article CAS PubMed Google Scholar
McLachlin DT, Chait BT. Analysis of phosphorylated proteins and peptides by mass spectrometry. Curr Opin Chem Biol. 2001;5(5):591–602.
Article CAS PubMed Google Scholar
Zhou YJ, Hanson EP, Chen YQ, Magnuson K, Chen M, Swann PG, et al. Distinct tyrosine phosphorylation sites in JAK3 kinase domain positively and negatively regulate its enzymatic activity. Proc Natl Acad Sci USA. 1997;94(25):13850–5.
Article CAS PubMed PubMed Central Google Scholar
Tsytlonok M, Sanabria H, Wang Y, Felekyan S, Hemmen K, Phillips AH, et al. Dynamic anticipation by Cdk2/Cyclin A-bound p27 mediates signal integration in cell cycle regulation. Nat Commun. 2019;10(1):1676.
Article PubMed PubMed Central Google Scholar
Schiappacassi M, Lovisa S, Lovat F, Fabris L, Colombatti A, Belletti B, et al. Role of T198 modification in the regulation of p27(Kip1) protein stability and function. PLoS ONE. 2011;6(3): e17673.
Article CAS PubMed PubMed Central Google Scholar
Darnell JE Jr. STATs and gene regulation. Science. 1997;277(5332):1630–5.
Article CAS PubMed Google Scholar
Leonard WJ, O’Shea JJ. Jaks and STATs: biological implications. Annu Rev Immunol. 1998;16:293–322.
Article CAS PubMed Google Scholar
Morris R, Kershaw NJ, Babon JJ. The molecular details of cytokine signaling via the JAK/STAT pathway. Protein science : a publication of the Protein Society. 2018;27(12):1984–2009.
Article CAS PubMed Google Scholar
Silver DL, Geisbrecht ER, Montell DJ. Requirement for JAK/STAT signaling throughout border cell migration in Drosophila. Development. 2005;132(15):3483–92.
Article CAS PubMed Google Scholar
Lin Q, Lai R, Chirieac LR, Li C, Thomazy VA, Grammatikakis I, et al. Constitutive activation of JAK3/STAT3 in colon carcinoma tumors and cell lines: inhibition of JAK3/STAT3 signaling induces apoptosis and cell cycle arrest of colon carcinoma cells. Am J Pathol. 2005;167(4):969–80.
Article CAS PubMed PubMed Central Google Scholar
Sicinski P, Donaher JL, Geng Y, Parker SB, Gardner H, Park MY, et al. Cyclin D2 is an FSH-responsive gene involved in gonadal cell proliferation and oncogenesis. Nature. 1996;384(6608):470–4.
Comments (0)