1H-detected characterization of carbon–carbon networks in highly flexible protonated biomolecules using MAS NMR

Agarwal V, Reif B (2008) Residual methyl protonation in perdeuterated proteins for multi-dimensional correlation experiments in MAS solid-state NMR spectroscopy. J Magn Reson 194(1):16–24. https://doi.org/10.1016/j.jmr.2008.05.021

Article  ADS  Google Scholar 

Agarwal V, Penzel S, Szekely K, Cadalbert R, Testori E, Oss A, Past J, Samoson A, Ernst M, Bockmann A, Meier BH (2014) De Novo 3D structure determination from sub-milligram protein samples by solid-state 100 kHz MAS NMR spectroscopy. Angew Chem-Int Edit 53(45):12253–12256. https://doi.org/10.1002/anie.201405730

Article  Google Scholar 

Alam TM, Holland GP (2006) 1 H–13C INEPT MAS NMR correlation experiments with 1H–1H mediated magnetization exchange to probe organization in lipid biomembranes. J Magn Reson 180(2):210–221. https://doi.org/10.1016/j.jmr.2006.02.013

Article  ADS  Google Scholar 

Andronesi OC, Becker S, Seidel K, Heise H, Young HS, Baldus M (2005) Determination of membrane protein structure and dynamics by magic-angle-spinning solid-state NMR spectroscopy. J Am Chem Soc 127(37):12965–12974. https://doi.org/10.1021/ja0530164

Article  Google Scholar 

Asami S, Reif B (2013) Proton-detected solid-state NMR spectroscopy at aliphatic sites: application to crystalline systems. Accounts Chem Res 46(9):2089–2097. https://doi.org/10.1021/ar400063y

Article  Google Scholar 

Baldus M, Meier BH (1996) Total correlation spectroscopy in the solid state. The use of scalar couplings to determine the through-bond connectivity. J Magn Reson Ser A 121(1):65–69. https://doi.org/10.1006/jmra.1996.0137

Article  ADS  Google Scholar 

Baldus M, Iuliucci RJ, Meier BH (1997) Probing through-bond connectivities and through-space distances in solids by magic-angle-spinning nuclear magnetic resonance. J Am Chem Soc 119(5):1121–1124. https://doi.org/10.1021/ja9622259

Article  Google Scholar 

Barbet-Massin E, Pell AJ, Jaudzems K, Franks WT, Retel JS, Kotelovica S, Akopjana I, Tars K, Emsley L, Oschkinat H, Lesage A, Pintacuda G (2013) Out-and-back 13C–13C scalar transfers in protein resonance assignment by proton-detected solid-state NMR under ultra-fast MAS. J Biomol NMR 56(4):379–386. https://doi.org/10.1007/s10858-013-9757-3

Article  Google Scholar 

Barbet-Massin E, Pell AJ, Retel JS, Andreas LB, Jaudzems K, Franks WT, Nieuwkoop AJ, Hiller M, Higman V, Guerry P, Bertarello A, Knight MJ, Felletti M, Le Marchand T, Kotelovica S, Akopjana I, Tars K, Stoppini M, Bellotti V, Bolognesi M, Ricagno S, Chou JJ, Griffin RG, Oschkinat H, Lesage A, Emsley L, Herrmann T, Pintacuda G (2014) Rapid proton-detected NMR assignment for proteins with fast magic angle spinning. J Am Chem Soc 136(35):12489–12497. https://doi.org/10.1021/ja507382j

Article  Google Scholar 

Barghorn S, Biernat J, Mandelkow E (2005) Purification of recombinant tau protein and preparation of alzheimer-paired helical filaments in vitro. In: Sigurdsson EM (ed) Amyloid Proteins: Methods and Protocols. NJ, Humana Press, Totowa, pp 35–51. https://doi.org/10.1385/1-59259-874-9:035

Chapter  Google Scholar 

Bax A, Clore GM, Gronenborn AM (1990) 1H–1H correlation via isotropic mixing of 13C magnetization, a new 3-dimensional approach for assigning 1H and 13C spectra of 13C-enriched proteins. J Magn Reson 88(2):425–431. https://doi.org/10.1016/0022-2364(90)90202-k

Article  ADS  Google Scholar 

Bennett AE, Ok JH, Griffin RG, Vega S (1992) Chemical-shift correlation spectroscopy in rotating solids—Radio frequency-driven dipolar recoupling and longitudinal exchange. J Chem Phys 96(11):8624–8627. https://doi.org/10.1063/1.462267

Article  ADS  Google Scholar 

Bergonzini C, Kroese K, Zweemer AJM, Danen EHJ (2022) Targeting integrins for cancer therapy—Disappointments and opportunities. Front Cell Dev Biol. https://doi.org/10.3389/fcell.2022.863850

Article  Google Scholar 

Blicharski JS, Sobol WT (1982) A new type of magnetic-field gradient coil for NMR measurements. J Magn Reson 46(1):1–8. https://doi.org/10.1016/0022-2364(82)90157-3

Article  ADS  Google Scholar 

Bougault C, Ayala I, Vollmer W, Simorre J-P, Schanda P (2019) Studying intact bacterial peptidoglycan by proton-detected NMR spectroscopy at 100 kHz MAS frequency. J Struct Biol 206(1):66–72. https://doi.org/10.1016/j.jsb.2018.07.009

Article  Google Scholar 

Brotzakis ZF, Lindstedt PR, Taylor RJ, Rinauro DJ, Gallagher NCT, Bernardes GJL, Vendruscolo M (2021) A structural ensemble of a tau-microtubule complex reveals regulatory tau phosphorylation and acetylation mechanisms. ACS Cent Sci 7(12):1986–1995. https://doi.org/10.1021/acscentsci.1c00585

Article  Google Scholar 

Callon M, Malar AA, Lecoq L, Dujardin M, Fogeron ML, Wang SS, Schledorn M, Bauer T, Nassal M, Bockmann A, Meier BH (2022) Fast magic-angle-spinning NMR reveals the evasive hepatitis B Virus capsid C-terminal domain. Angew Chem Int Ed. https://doi.org/10.1002/anie.202201083

Article  Google Scholar 

Chowdhury AD, Houben K, Whiting GT, Chung S-H, Baldus M, Weckhuysen BM (2018a) Electrophilic aromatic substitution over zeolites generates Wheland-type reaction intermediates. Nat Catal 1(1):23–31. https://doi.org/10.1038/s41929-017-0002-4

Article  Google Scholar 

Chowdhury AD, Paioni AL, Houben K, Whiting GT, Baldus M, Weckhuysen BM (2018b) Bridging the gap between the direct and hydrocarbon pool mechanisms of the methanol-to-hydrocarbons process. Angew Chem Int Ed 57(27):8095–8099. https://doi.org/10.1002/anie.201803279

Article  Google Scholar 

Clore GM, Bax A, Driscoll PC, Wingfield PT, Gronenborn AM (1990) Assignment of the side-chain 1H and 13C resonances of interleukin-beta using double-resonance and triple-resonance heteronuclear 3-dimensional nmr-spectroscopy. Biochemistry 29(35):8172–8184. https://doi.org/10.1021/bi00487a027

Article  Google Scholar 

Damman R, Schütz S, Luo Y, Weingarth M, Sprangers R, Baldus M (2019) Atomic-level insight into mRNA processing bodies by combining solid and solution-state NMR spectroscopy. Nat Commun 10(1):4536. https://doi.org/10.1038/s41467-019-12402-3

Article  ADS  Google Scholar 

Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6(3):277–293. https://doi.org/10.1007/BF00197809

Article  Google Scholar 

Ehren HL, Appels FVW, Houben K, Renault MAM, Wösten HAB, Baldus M (2020) Characterization of the cell wall of a mushroom forming fungus at atomic resolution using solid-state NMR spectroscopy. The Cell Surface 6:100046. https://doi.org/10.1016/j.tcsw.2020.100046

Article  Google Scholar 

Elena B, Lesage A, Steuernagel S, Böckmann A, Emsley L (2005) Proton to carbon-13 INEPT in solid-state NMR spectroscopy. J Am Chem Soc 127(49):17296–17302. https://doi.org/10.1021/ja054411x

Article  Google Scholar 

Falk AS, Siemer AB (2016) Dynamic domains of amyloid fibrils can be site-specifically assigned with proton detected 3D NMR spectroscopy. J Biomol NMR 66(3):159–162. https://doi.org/10.1007/s10858-016-0069-2

Article  Google Scholar 

Fricke P, Chevelkov V, Zinke M, Giller K, Becker S, Lange A (2017) Backbone assignment of perdeuterated proteins by solid-state NMR using proton detection and ultrafast magic-angle spinning. Nat Protoc 12(4):764–782. https://doi.org/10.1038/nprot.2016.190

Article  Google Scholar 

Fu R, Cross TA (1999) Solid-state nuclear magnetic resonance investigation of protein and polypeptide structure. Annu Rev Biophys Biomol Struct 28:235–268. https://doi.org/10.1146/annurev.biophys.28.1.235

Article  Google Scholar 

Ghassemi N, Poulhazan A, Deligey F, Mentink-Vigier F, Marcotte I, Wang T (2021) Solid-state NMR investigations of extracellular matrixes and cell walls of algae, bacteria, fungi, and plants. Chem Rev. https://doi.org/10.1021/acs.chemrev.1c00669

Article  Google Scholar 

Griffin RG (1998) Dipolar recoupling in MAS spectra of biological solids. Nat Struct Biol 5(Suppl):508–512. https://doi.org/10.1038/749

Article  Google Scholar 

Guo CM, Hou GJ, Lu XY, O’Hare B, Struppe J, Polenova T (2014) Fast magic angle spinning NMR with heteronucleus detection for resonance assignments and structural characterization of fully protonated proteins. J Biomol NMR 60(4):219–229. https://doi.org/10.1007/s10858-014-9870-y

Article  Google Scholar 

Heise H, Hoyer W, Becker S, Andronesi OC, Riedel D, Baldus M (2005) Molecular-level secondary structure, polymorphism, and dynamics of full-length alpha-synuclein fibrils studied by solid-state NMR. Proc Natl Acad Sci U S A 102(44):15871–15876. https://doi.org/10.1073/pnas.0506109102

Article  ADS  Google Scholar 

Howarth GS, McDermott AE (2022) High-resolution magic angle spinning NMR of KcsA in LIPOSOMES: the highly mobile C-terminus. Biomolecules 12(8):1122. https://doi.org/10.3390/biom12081122

Article  Google Scholar 

Ikura M, Kay LE, Bax A (1990) A novel approach for sequential assignment of proton, carbon-13, and nitrogen-15 spectra of larger proteins—Heteronuclear triple-resonance 3-dimensional NMR-Spectroscopy—Application to calmodulin. Biochemistry 29(19):4659–4667. https://doi.org/10.1021/bi00471a022

Article  Google Scholar 

Jaroniec CP, Filip C, Griffin RG (2002) 3D TEDOR NMR experiments for the simultaneous measurement of multiple carbon-nitrogen distances in uniformly 13C, 15N-labeled solids. J Am Chem Soc 124(36):10728–10742. https://doi.org/10.1021/ja026385y

Article  Google Scholar 

Kadavath H, Hofele RV, Biernat J, Kumar S, Tepper K, Urlaub H, Mandelkow E, Zweckstetter M (2015) Tau stabilizes microtubules by binding at the interface between tubulin heterodimers. Proc Natl Acad Sci U S A 112(24):7501–7506. https://doi.org/10.1073/pnas.1504081112

Article  ADS  Google Scholar 

Kaplan M, Narasimhan S, de Heus C, Mance D, van Doorn S, Houben K, Popov-Čeleketić D, Damman R, Katrukha EA, Jain P, Geerts WJC, Heck AJR, Folkers GE, Kapitein LC et al (2016) EGFR dynamics change during activation in native membranes as revealed by NMR. Cell 167(5):1241-1251.e1211. https://doi.org/10.1016/j.cell.2016.10.038

Article  Google Scholar 

Kay LE, Ikura M, Tschudin R, Bax A (1990) 3-Dimensional triple-resonance nmr-spectroscopy of isotopically enriched proteins. J Magn Reson 89(3):496–514. https://doi.org/10.1016/j.jmr.2011.09.004

Article  ADS  Google Scholar 

Lee W, Tonelli M, Markley JL (2015) NMRFAM-SPARKY: enhanced software for biomolecular NMR spectroscopy. Bioinformatics 31(8):1325–1327. https://doi.org/10.1093/bioinformatics/btu830

Article  Google Scholar 

Li W, Lee REB, Lee RE, Li J (2005) Methods for acquisition and assignment of multidimensional high-resolution magic angle spinning NMR of whole cell bacteria. Anal Chem 77(18):5785–5792. https://doi.org/10.1021/ac050906t

Article  Google Scholar 

Linser R, Fink U, Reif B (2008) Proton-detected scalar coupling based assignment strategies in MAS solid-state NMR spectroscopy applied to perdeuterated proteins. J Magn Reson 193(1):89–93. https://doi.org/10.1016/j.jmr.2008.04.021

Article  ADS  Google Scholar 

Linser R, Fink U, Reif B (2010) Assignment of dynamic regions in biological solids enabled by spin-state selective NMR experiments. J Am Chem Soc 132(26):8891–8893. https://doi.org/10.1021/ja102612m

Article  Google Scholar 

Luca S, Heise H, Baldus M (2003) High-resolution solid-state NMR applied to polypeptides and membrane proteins. Accounts Chem Res 36(11):858–865. https://doi.org/10.1021/ar020232y

Article  Google Scholar 

Luo Y, Xiang S, Hooikaas PJ, van Bezouwen L, Jijumon AS, Janke C, Förster F, Akhmanova A, Baldus M (2020) Direct observation of dynamic protein interactions involving human microtubules using solid-state NMR spectroscopy. Nat Commun 11(1):18. https://doi.org/10.1038/s41467-019-13876-x

Article  ADS  Google Scholar 

留言 (0)

沒有登入
gif