Enabling site-specific NMR investigations of therapeutic Fab using a cell-free based isotopic labeling approach: application to anti-LAMP1 Fab

Agarwal AK, Gude RP, Kalraiya RD (2014) Regulation of melanoma metastasis to lungs by cell surface lysosome associated membrane protein-1 (LAMP1) via galectin-3. Biochem Biophys Res Commun 449(3):332–337. https://doi.org/10.1016/j.bbrc.2014.05.028

Article  Google Scholar 

Alessandrini F, Pezzè L, Ciribilli Y (2017) LAMPs: shedding light on cancer biology. Semin Oncol 44(4):239–253. https://doi.org/10.1053/j.seminoncol.2017.10.013

Article  Google Scholar 

Arora A, Ha C, Park CB (2004) Inhibition of insulin amyloid formation by small stress molecules. FEBS Lett 564(1–2):121–125. https://doi.org/10.1016/S0014-5793(04)00326-6

Article  Google Scholar 

Brinson RG, Marino JP, Delaglio F, Arbogast LW, Evans RM, Kearsley A, Gingras G, Ghasriani H, Aubin Y, Pierens GK, Jia X, Mobli M, Grant HG, Keizer DW, Schweimer K, Ståhle J, Widmalm G, Zartler ER, Lawrence CW et al (2018) Enabling adoption of 2D-NMR for the higher order structure assessment of monoclonal antibody therapeutics. mAbs 11(1):94–105. https://doi.org/10.1080/19420862.2018.1544454

Article  Google Scholar 

Cameron B, Dabdoubi T, Berthou-Soulié L, Gagnaire M, Arnould I, Severac A, Soubrier F, Morales J, Leighton PA, Harriman W, Ching K, Abdiche Y, Radošević K, Bouquin T (2020) Complementary epitopes and favorable developability of monoclonal anti-LAMP1 antibodies generated using two transgenic animal platforms. PLoS ONE 15(7):e0235815. https://doi.org/10.1371/journal.pone.0235815

Article  Google Scholar 

Cerofolini L, Ravera E, Fischer C, Trovato A, Sacco F, Palinsky W, Angiuoni G, Fragai M, Baroni F (2023) Integration of NMR spectroscopy in an analytical workflow to evaluate the effects of oxidative stress on abituzumab: beyond the fingerprint of mAbs. Anal Chem 95(24):9199–9206. https://doi.org/10.1021/acs.analchem.3c00317

Article  Google Scholar 

Clark L, Dikiy I, Rosenbaum DM, Gardner KH (2018) On the use of Pichia pastoris for isotopic labeling of human GPCRs for NMR studies. J Biomol NMR 71(4):203–211. https://doi.org/10.1007/s10858-018-0204-3

Article  Google Scholar 

de Marco A (2009) Strategies for successful recombinant expression of disulfide bond-dependent proteins in Escherichia coli. Microb Cell Fact 8(1):26. https://doi.org/10.1186/1475-2859-8-26

Article  Google Scholar 

Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6(3):277–293. https://doi.org/10.1007/BF00197809

Article  Google Scholar 

Dopp JL, Reuel NF (2020) Simple, functional, inexpensive cell extract for in vitro prototyping of proteins with disulfide bonds. Biochem Eng J 164:107790. https://doi.org/10.1016/j.bej.2020.107790

Article  Google Scholar 

Etezady-Esfarjani T, Hiller S, Villalba C, Wüthrich K (2007) Cell-free protein synthesis of perdeuterated proteins for NMR studies. J Biomol NMR 39(3):229–238. https://doi.org/10.1007/s10858-007-9188-0

Article  Google Scholar 

Favier A, Brutscher B (2019) NMRlib: user-friendly pulse sequence tools for Bruker NMR spectrometers. J Biomol NMR 73(5):199–211. https://doi.org/10.1007/s10858-019-00249-1

Article  Google Scholar 

Gaciarz A, Veijola J, Uchida Y, Saaranen MJ, Wang C, Hörkkö S, Ruddock LW (2016) Systematic screening of soluble expression ofantibody fragments in the cytoplasm of E. Coli. Microb Cell Fact 15(1):22. https://doi.org/10.1186/s12934-016-0419-5

Article  Google Scholar 

Gad W, Nair MG, Belle KV, Wahni K, Greve HD, Ginderachter JAV, Vandenbussche G, Endo Y, Artis D, Messens J (2013) The Quiescin Sulfhydryl Oxidase (hQSOX1b) Tunes the Expression of Resistin-Like Molecule Alpha (RELM-α or mFIZZ1) in a Wheat Germ Cell-Free Extract. PLOS ONE 8(1):e55621. https://doi.org/10.1371/journal.pone.0055621

Gagné D, Sarker M, Gingras G, Hodgson DJ, Frahm G, Creskey M, Lorbetskie B, Bigelow S, Wang J, Zhang X, Johnston MJW, Lu H, Aubin Y (2023) Strategies for the production of isotopically labelled Fab fragments of therapeutic antibodies in Komagataella phaffii (Pichia pastoris) and Escherichia coli for NMR studies. PLoS ONE 18:e0294406. https://doi.org/10.1371/journal.pone.0294406

Article  Google Scholar 

Gardner KH, Kay LE (1998) The Use of 2 h, 13c, 15n multidimensional nmr gto study the structure and dynamics of proteins. Annu Rev BioPhys BioMol Struct 27(1):357–406. https://doi.org/10.1146/annurev.biophys.27.1.357

Article  Google Scholar 

Garrett DS, Seok Y-J, Liao D-I, Peterkofsky A, Gronenborn AM, Clore GM (1997) Solution structure of the 30 kDa N-terminal domain of enzyme I of the Escherichia coli phosphoenolpyruvate:sugar phosphotransferase system by multidimensional NMR. Biochemistry 36(9):2517–2530. https://doi.org/10.1021/bi962924y

Article  Google Scholar 

Ghasriani H, Ahmadi S, Hodgson DJ, Aubin Y (2022) Backbone and side-chain resonance assignments of the NISTmAb-scFv and antigen-binding study. Biomol NMR Assignments 16(2):391–398. https://doi.org/10.1007/s12104-022-10109-z

Article  Google Scholar 

Gupta SK, Shukla P (2017) Microbial platform technology for recombinant antibody fragment production: a review. Crit Rev Microbiol 43(1):31–42. https://doi.org/10.3109/1040841X.2016.1150959

Article  Google Scholar 

Han B, Liu Y, Ginzinger SW, Wishart DS (2011) SHIFTX2: significantly improved protein chemical shift prediction. J Biomol NMR 50(1):43–57. https://doi.org/10.1007/s10858-011-9478-4

Article  Google Scholar 

Hsu C-C, Thomas OR, Overton TW (2016) Periplasmic expression in and release of fab fragments from Escherichia coli using stress minimization. J Chem Technol Biotechnol 91(3):815–822. https://doi.org/10.1002/jctb.4672

Article  Google Scholar 

Ikura M, Kay LE, Bax A (1990) A novel approach for sequential assignment of proton, carbon-13, and nitrogen-15 spectra of larger proteins: heteronuclear triple-resonance three-dimensional NMR spectroscopy. application to calmodulin. Biochemistry 29(19):4659–4667. https://doi.org/10.1021/bi00471a022

Article  Google Scholar 

Imbert L, Lenoir-Capello R, Crublet E, Vallet A, Awad R, Ayala I, Juillan-Binard C, Mayerhofer H (2021) In vitro production of perdeuterated proteins in H2O for biomolecular NMR studies. In: Chen Y. W., Yiu C.-P. B. (eds) Structural genomics: general applications. Springer, Berlin, pp 127–149. https://doi.org/10.1007/978-1-0716-0892-0_8

Chapter  Google Scholar 

Kai L, Dötsch V, Kaldenhoff R, Bernhard F (2013) Artificial environments for the Co-translational stabilization of cell-free expressed proteins. PLoS ONE. https://doi.org/10.1371/journal.pone.0056637

Article  Google Scholar 

Kaplon H, Crescioli S, Chenoweth A, Visweswaraiah J, Reichert JM (2023) Antibodies to watch in 2023. mAbs 15(1):2153410. https://doi.org/10.1080/19420862.2022.2153410

Article  Google Scholar 

Katz JJ, Crespi HL (1966) Deuterated organisms: cultivation and uses. Science 151(3715):1187–1194. https://doi.org/10.1126/science.151.3715.1187

Article  ADS  Google Scholar 

Kigawa T (2010) Cell-free protein preparation through prokaryotic transcription–translation methods. In: Endo Y, Takai K, Ueda T (eds) Cell-free protein production: methods and protocols. Humana Press, Totowa, pp 1–10. https://doi.org/10.1007/978-1-60327-331-2_1

Chapter  Google Scholar 

Kigawa T, Yabuki T, Matsuda N, Matsuda T, Nakajima R, Tanaka A, Yokoyama S (2004) Preparation of Escherichia coli cell extract for highly productive cell-free protein expression. J Struct Funct Genomics 5(1):63–68. https://doi.org/10.1023/B:JSFG.0000029204.57846.7d

Article  Google Scholar 

Kim DM, Choi CY (1996) A semicontinuous prokaryotic coupled transcription/translation system using a dialysis membrane. Biotechnol Prog 12(5):645–649. https://doi.org/10.1021/bp960052l

Article  Google Scholar 

Kunert R, Reinhart D (2016) Advances in recombinant antibody manufacturing. Appl Microbiol Biotechnol 100(8):3451–3461. https://doi.org/10.1007/s00253-016-7388-9

Article  Google Scholar 

Lescop E, Schanda P, Brutscher B (2007) A set of BEST triple-resonance experiments for time-optimized protein resonance assignment. J Magn Reson 187(1):163–169. https://doi.org/10.1016/j.jmr.2007.04.002

Article  ADS  Google Scholar 

Lobstein J, Emrich CA, Jeans C, Faulkner M, Riggs P, Berkmen M (2012) SHuffle, a novel Escherichia coli protein expression strain capable of correctly folding disulfide bonded proteins in its cytoplasm. Microb Cell Fact 11(1):753. https://doi.org/10.1186/1475-2859-11-56

Article  Google Scholar 

Marino JP, Brinson RG, Hudgens JW, Ladner JE, Gallagher DT, Gallagher ES, Arbogast LW, Huang RY-C (2015) Emerging technologies to assess the higher order structure of monoclonal antibodies. ACS Symposium Series 1202(2):17–43. https://doi.org/10.1021/bk-2015-1202.ch002

Matsuda T, Watanabe S, Kigawa T (2013) Cell-free synthesis system suitable for disulfide-containing proteins. Biochem Biophys Res Commun 431(2):296–301. https://doi.org/10.1016/j.bbrc.2012.12.107

Article  Google Scholar 

Matsuda T, Ito T, Takemoto C, Katsura K, Ikeda M, Wakiyama M, Kukimoto-Niino M, Yokoyama S, Kurosawa Y, Shirouzu M (2018) Cell-free synthesis of functional antibody fragments to provide a structural basis for antibody–antigen interaction. PLoS ONE 13(2):e0193158. https://doi.org/10.1371/journal.pone.0193158

Article  Google Scholar 

Michel E, Wüthrich K (2012) Cell-free expression of disulfide-containing eukaryotic proteins for structural biology: cell-free expression of disulfide-containing proteins. FEBS J 279(17):3176–3184. https://doi.org/10.1111/j.1742-4658.2012.08697.x

Article  Google Scholar 

Mishra A, Mody RS, Pandey A, Somani S (2018) An improved refolding process for antibody’s fragments (Brevet AU2016307976A1). https://patents.google.com/patent/AU2016307976A1/en

Missiakas D, Georgopoulos C, Raina S (1994) The Escherichia coli dsbC (xprA) gene encodes a periplasmic protein involved in disulfide bond formation. EMBO J 13(8):2013–2020

Article  Google Scholar 

Morgan WD, Kragt A, Feeney J (2000) Expression of deuterium-isotope-labelled protein in the yeast Pichia pastoris for NMR studies. J Biomol NMR 17(4):337–347. https://doi.org/10.1023/A:1008313530207

Article  Google Scholar 

Nakamoto H, Bardwell JCA (2004) Catalysis of disulfide bond formation and isomerization in the Escherichia coli periplasm. Biochim Biophys Acta (BBA) - Mol Cell Res 1694(1):111–119. https://doi.org/10.1016/j.bbamcr.2004.02.012

Article  Google Scholar 

Pratt C (1980) Kinetics and regulation of cell-free alkaline phosphatase synthesis. J Bacteriol 143(3):1265–1274. https://doi.org/10.1128/jb.143.3.1265-1274.1980

Article  Google Scholar 

Pruvost T, Mathieu M, Dubois S, Maillère B, Vigne E, Nozach H (2023) Deciphering cross-species reactivity of LAMP-1 antibodies using deep mutational epitope mapping and alphafold. mAbs 15(1):2175311. https://doi.org/10.1080/19420862.2023.2175311

Article  Google Scholar 

Rietsch A, Belin D, Martin N, Beckwith J (1996) An in vivo pathway for disulfide bond isomerization in Escherichia coli. Proc Natl Acad Sci USA 93(23):13048–13053. https://doi.org/10.1073/pnas.93.23.13048

Article  ADS  Google Scholar 

Sawasaki T, Hasegawa Y, Tsuchimochi M, Kamura N, Ogasawara T, Kuroita T, Endo Y (2002) A bilayer cell-free protein synthesis system for high-throughput screening of gene products. FEBS Lett 514(1):102–105. https://doi.org/10.1016/S0014-5793(02)02329-3

Article  Google Scholar 

Schmidt E, Güntert P (2012) A new algorithm for reliable and general NMR resonance assignment. J Am Chem Soc 134(30):12817–12829.

留言 (0)

沒有登入
gif