Molecular insights into titin’s A-band

Akinrinade O, Alastalo T-P, Koskenvuo JW (2016) Relevance of truncating titin mutations in dilated cardiomyopathy. Clin Genet 90:49–54

CAS  PubMed  Google Scholar 

Amodeo P, Fraternali F, Lesk AM, Pastore A (2001) Modularity and homology: modelling of the titin type I modules and their interfaces. J Mol Biol 311:283–296

CAS  PubMed  Google Scholar 

Bang ML, Centner T, Fornoff F, Geach AJ, Gotthardt M, McNabb M, Witt CC, Labeit D, Gregorio CC, Granzier H, Labeit S (2001) The complete gene sequence of titin, expression of an unusual approximately 700-kDa titin isoform, and its interaction with obscurin identify a novel Z-line to I-band linking system. Circ Res 89:1065–1072

CAS  PubMed  Google Scholar 

Begay RL, Graw S, Sinagra G, Merlo M, Slavov D, Gowan K, Jones KL, Barbati G, Spezzacatene A, Brun F, Di Lenarda A, Smith JE, Granzier HL, Mestroni L, Taylor M, Familial Cardiomyopathy Registry (2015) Role of titin missense variants in dilated cardiomyopathy. J Am Heart Assoc 4:e002645

PubMed  PubMed Central  Google Scholar 

Bennett PM, Gautel M (1996) Titin domain patterns correlate with the axial disposition of myosin at the end of the thick filament. J Mol Biol 259:896–903

CAS  PubMed  Google Scholar 

Bennett P, Rees M, Gautel M (2020) The Axial Alignment of Titin on the muscle thick filament supports its role as a molecular ruler. J Mol Biol 432:4815–4829

CAS  PubMed  PubMed Central  Google Scholar 

Bogomolovas J, Fleming JR, Anderson BR, Williams R, Lange S, Simon B, Khan MM, Rudolf R, Franke B, Bullard B, Rigden DJ, Granzier H, Labeit S, Mayans O (2016) Exploration of pathomechanisms triggered by a single-nucleotide polymorphism in titin’s I-band: the cardiomyopathy-linked mutation T2580I. Open Biol 6:160114

PubMed  PubMed Central  Google Scholar 

Bucher RM, Svergun DI, Muhle-Goll C, Mayans O (2010) The structure of the FnIII Tandem A77-A78 points to a periodically conserved architecture in the myosin-binding region of titin. J Mol Biol 401:843–853

CAS  PubMed  Google Scholar 

Emsley P, Lohkamp B, Scott WG, Cowtan K (2010) Features and development of Coot. Acta Crystallogr D Biol Crystallogr 66:486–501

CAS  PubMed  PubMed Central  Google Scholar 

Fleming JR, Rigden DJ, Mayans O (2020) The importance of chain context in assessing small nucleotide variants in titin: in silico case study of the I10-I11 tandem and its arrhythmic right ventricular cardiomyopathy linked position T2580. J Biol Struct & Dyn 22:1–11

Google Scholar 

Freiburg A, Gautel M (1996) A molecular map of the interactions between titin and myosin-binding protein C. Implications for sarcomeric assembly in familial hypertrophic cardiomyopathy. Eur J Biochem 235:317–323

CAS  PubMed  Google Scholar 

Goll CM, Pastore A, Nilges M (1998) The three-dimensional structure of a type I module from titin: a prototype of intracellular fibronectin type III domains. Structure 6:1291–1302

CAS  PubMed  Google Scholar 

Granzier HL, Hutchinson KR, Tonino P, Methawasin M, Li FW, Slater RE, Bull MM, Saripalli C, Pappas CT, Gregorio CC, Smith JE 3rd (2014) Deleting titin’s I-band/A-band junction reveals critical roles for titin in biomechanical sensing and cardiac function. Proc Natl Acad Sci USA 111:14589–14594

CAS  PubMed  PubMed Central  Google Scholar 

Greaser M (2001) Identification of new repeating motifs in titin. Proteins 43:145–149

CAS  PubMed  Google Scholar 

Hamill SJ, Cota E, Chothia C, Clarke J (2000) Conservation of folding and stability within a protein family: the tyrosine corner as an evolutionary cul-de-sac. J Mol Biol 295:641–649

CAS  PubMed  Google Scholar 

Heling LWHJ, Geeves MA, Kad NM (2020) MyBP-C: one protein to govern them all. J Muscle Res Cell Motil 41:91–101

CAS  PubMed  PubMed Central  Google Scholar 

Herman DS, Lam L, Taylor MRG et al (2012) Truncations of titin causing dilated cardiomyopathy. N Engl J Med 366:619–628

CAS  PubMed  PubMed Central  Google Scholar 

Higgins DG, Labeit S, Gautel M, Gibson TJ (1994) The evolution of titin and related giant muscle proteins. J Mol Evol 38:395–404

CAS  PubMed  Google Scholar 

Hill CJ, Fleming JR, Mousavinejad M, Nicholson R, Tzokov SB, Bullough PA, Bogomolovas J, Morgan MR, Mayans O, Murray P (2019) Self-Assembling Proteins as High-Performance Substrates for Embryonic Stem Cell Self-Renewal. Adv Mater 31:e1807521

PubMed  Google Scholar 

Houmeida A, Holt J, Tskhovrebova L, Trinick J (1995) Studies of the interaction between titin and myosin. J Cell Biol 131:1471–1481

CAS  PubMed  Google Scholar 

Huxley HE (1963) Electron microscope studies on the structure of natural and synthetic protein filaments from striated muscle. J Mol Biol 7:281–308

CAS  PubMed  Google Scholar 

Huxley HE (1967) Recent x-ray diffraction and electron microscope studies of striated muscle. J Gen Physiol 50:71–83

PubMed Central  Google Scholar 

Kabsch W (1976) A solution for the best rotation to relate two sets of vectors. Acta Crystallogr Sect A 32:922–923

Google Scholar 

Kabsch W (1978) A discussion of the solution for the best rotation to relate two sets of vectors. Acta Crystallogr Sect A 34:827–828

Google Scholar 

Kabsch W (2010) XDS. Acta Crystallogr D Biol Crystallogr 66:125–132

CAS  PubMed  PubMed Central  Google Scholar 

Kenny PA, Liston EM, Higgins DG (1999) Molecular evolution of immunoglobulin and fibronectin domains in titin and related muscle proteins. Gene 232:11–23

CAS  PubMed  Google Scholar 

Labeit S, Gautel M, Lakey A, Trinick J (1992) Towards a molecular understanding of titin. EMBO J 11:1711–1716

CAS  PubMed  PubMed Central  Google Scholar 

Lee EH, Hsin J, von Castelmur E, Mayans O, Schulten K (2010) Tertiary and Secondary Structure Elasticity of a Six-Ig Titin Chain. Biophys J 98:1085–1095

CAS  PubMed  PubMed Central  Google Scholar 

Lee K, Harris SP, Sadayappan S, Craig R (2015) Orientation of myosin binding protein C in the cardiac muscle sarcomere determined by domain-specific immuno-EM. J Mol Biol 427:274–286

CAS  PubMed  Google Scholar 

Liebschner D, Afonine PV, Baker ML et al (2019) Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr Sect Struct Biol 75:861–877

CAS  Google Scholar 

Linke WA (2018) Titin Gene and Protein Functions in Passive and Active Muscle. Annu Rev Physiol 80:389–411

CAS  PubMed  Google Scholar 

Linke WA, Granzier H (1998) A spring tale: new facts on titin elasticity. Biophys J 75:2613–2614

CAS  PubMed  PubMed Central  Google Scholar 

Linke WA, Rudy DE, Centner T et al (1999) I-band titin in cardiac muscle is a three-element molecular spring and is critical for maintaining thin filament structure. J Cell Biol

Loescher CM, Hobbach AJ, Linke WA (2022) Titin (TTN): from molecule to modifications, mechanics, and medical significance. Cardiovasc Res 118:2903–2918

CAS  PubMed  Google Scholar 

Marino M, Svergun DI, Kreplak L, Konarev PV, Maco B, Labeit D, Mayans O (2005) Poly-Ig tandems from I-band titin share extended domain arrangements irrespective of the distinct features of their modular constituents. J Muscle Res Cell Motil 26:355–365

CAS  PubMed  Google Scholar 

McCoy AJ, Grosse-Kunstleve RW, Adams PD et al (2007) Phaser crystallographic software. J Appl Crystallogr 40:658–674

CAS  PubMed  PubMed Central  Google Scholar 

Mrosek M, Labeit D, Witt S, Mrosek M, Labeit D, Witt S, Heerklotz H, von Castelmur E, Labeit S, Mayans O (2007) Molecular determinants for the recruitment of the ubiquitin-ligase MuRF-1 onto M-line titin. FASEB J 21:1383–1392

CAS  PubMed  Google Scholar 

Mueller-Dieckmann C, Panjikar S, Schmidt A, Mueller S, Kuper J, Geerlof A, Wilmanns M, Singh RK, Tucker PA, Weiss MS (2007) On the routine use of soft X-rays in macromolecular crystallography. Part IV. Efficient determination of anomalous substructures in biomacromolecules using longer X-ray wavelengths. Acta Crystallogr D Biol Crystallogr 63:366–380

CAS  PubMed  Google Scholar 

Muhle-Goll C, Habeck M, Cazorla O, Nilges M, Labeit S, Granzier H (2001) Structural and functional studies of titin’s fn3 modules reveal conserved surface patterns and binding to myosin S1–a possible role in the Frank-Starling mechanism of the heart. J Mol Biol 313:431–447

CAS  PubMed  Google Scholar 

Müller S, Lange S, Gautel M, Wilmanns M (2007) Rigid conformation of an immunoglobulin domain tandem repeat in the A-band of the elastic muscle protein titin. J Mol Biol 371:469–480

PubMed  Google Scholar 

Nesterenko Y, Hill CJ, Fleming JR, Murray P, Mayans O (2019) The ZT Biopolymer: A Self-Assembling Protein Scaffold for Stem Cell Applications. Int J Mol Sci 20:4299

CAS  PubMed  PubMed Central  Google Scholar 

Pei J, Grishin NV (2001) AL2CO: calculation of positional conservation in a protein sequence alignment. Bioinformatics 17:700–712

CAS  PubMed  Google Scholar 

Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera–a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612

CAS  PubMed  Google Scholar 

Rees M, Nikoopour R, Fukuzawa A et al (2021) Making sense of missense variants in TTN-related congenital myopathies. Acta Neuropathol (Berl) 141:431–453

CAS  PubMed  Google Scholar 

Rich KA, Moscarello T, Siskind C, Brock G, Tan CA, Vatta M, Winder TL, Elsheikh B, Vicini L, Tucker B, Palettas M, Hershberger RE, Kissel JT, Morales A, Roggenbuck J (2020) Novel heterozygous truncating titin variants affecting the A-band are associated with cardiomyopathy and myopathy/muscular dystrophy. Mol Genet Genomic Med 8:e1460

Comments (0)

No login
gif