AMPK and glucose deprivation exert an isoform-specific effect on the expression of Na+,K+-ATPase subunits in cultured myotubes

Abdelmoez AM, Sardon Puig L, Smith JAB, Gabriel BM, Savikj M, Dollet L, Chibalin AV, Krook A, Zierath JR, Pillon NJ (2020) Comparative profiling of skeletal muscle models reveals heterogeneity of transcriptome and metabolism. Am J Physiol Cell Physiol 318:C615–C626

Article  PubMed  Google Scholar 

Ackermann U, Geering K (1990) Mutual dependence of Na,K-ATPase alpha- and beta-subunits for correct posttranslational processing and intracellular transport. FEBS Lett 269:105–108

Article  CAS  PubMed  Google Scholar 

Benziane B, Chibalin AV (2008) Frontiers: skeletal muscle sodium pump regulation: a translocation paradigm. Am J Physiol Endocrinol Metab 295:E553–558

Article  CAS  PubMed  Google Scholar 

Benziane B, Bjornholm M, Lantier L, Viollet B, Zierath JR, Chibalin AV (2009) AMP-activated protein kinase activator A-769662 is an inhibitor of the na(+)-K(+)-ATPase. Am J Physiol Cell Physiol 297:C1554–1566

Article  CAS  PubMed  Google Scholar 

Benziane B, Bjornholm M, Pirkmajer S, Austin RL, Kotova O, Viollet B, Zierath JR, Chibalin AV (2012) Activation of AMP-activated protein kinase stimulates Na+,K+-ATPase activity in skeletal muscle cells. J Biol Chem 287:23451–23463

Article  CAS  PubMed  PubMed Central  Google Scholar 

Biron R, Burger A, Chinet A, Clausen T, Dubois-Ferriere R (1979) Thyroid hormones and the energetics of active sodium-potassium transport in mammalian skeletal muscles. J Physiol 297:47–60

Article  CAS  PubMed  PubMed Central  Google Scholar 

Blanco G, Mercer RW (1998) Isozymes of the Na-K-ATPase: heterogeneity in structure, diversity in function. Am J Physiol 275:F633–650

CAS  PubMed  Google Scholar 

Boon H, Kostovski E, Pirkmajer S, Song M, Lubarski I, Iversen PO, Hjeltnes N, Widegren U, Chibalin AV (2012) Influence of chronic and acute spinal cord injury on skeletal muscle Na+-K+-ATPase and phospholemman expression in humans. Am J Physiol Endocrinol Metab 302:E864–871

Article  CAS  PubMed  Google Scholar 

Chibalin AV, Kovalenko MV, Ryder JW, Feraille E, Wallberg-Henriksson H, Zierath JR (2001) Insulin- and glucose-induced phosphorylation of the na(+),K(+)-adenosine triphosphatase alpha-subunits in rat skeletal muscle. Endocrinology 142:3474–3482

Article  CAS  PubMed  Google Scholar 

Chibalin AV, Heiny JA, Benziane B, Prokofiev AV, Vasiliev AV, Kravtsova VV, Krivoi II (2012) Chronic nicotine modifies skeletal muscle Na,K-ATPase activity through its interaction with the nicotinic acetylcholine receptor and phospholemman. PLoS ONE 7:e33719

Article  CAS  PubMed  PubMed Central  Google Scholar 

Christiansen D (2019) Molecular stressors underlying exercise training-induced improvements in K(+) regulation during exercise and na(+),K(+) -ATPase adaptation in human skeletal muscle. Acta Physiol (Oxf) 225:e13196

Article  PubMed  Google Scholar 

Christiansen D, Murphy RM, Bangsbo J, Stathis CG, Bishop DJ (2018) Increased FXYD1 and PGC-1alpha mRNA after blood flow-restricted running is related to fibre type-specific AMPK signalling and oxidative stress in human muscle. Acta Physiol (Oxf) 223:e13045

Article  CAS  PubMed  Google Scholar 

Christiansen D, Eibye KH, Rasmussen V, Voldbye HM, Thomassen M, Nyberg M, Gunnarsson TGP, Skovgaard C, Lindskrog MS, Bishop DJ, Hostrup M, Bangsbo J (2019) Cycling with blood flow restriction improves performance and muscle K(+) regulation and alters the effect of anti-oxidant infusion in humans. J Physiol 597:2421–2444

Article  CAS  PubMed  PubMed Central  Google Scholar 

Clausen T (2003) Na+-K + pump regulation and skeletal muscle contractility. Physiol Rev 83:1269–1324

Article  CAS  PubMed  Google Scholar 

Crambert G, Fuzesi M, Garty H, Karlish S, Geering K (2002) Phospholemman (FXYD1) associates with Na,K-ATPase and regulates its transport properties. Proc Natl Acad Sci U S A 99:11476–11481

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dolinar K, Jan V, Pavlin M, Chibalin AV, Pirkmajer S (2018) Nucleosides block AICAR-stimulated activation of AMPK in skeletal muscle and cancer cells. Am J Physiol Cell Physiol

Efendiev R, Bertorello AM, Zandomeni R, Cinelli AR, Pedemonte CH (2002) Agonist-dependent regulation of renal Na+,K+-ATPase activity is modulated by intracellular sodium concentration. J Biol Chem 277:11489–11496

Article  CAS  PubMed  Google Scholar 

Egleton RD, Campos CC, Huber JD, Brown RC, Davis TP (2003) Differential effects of diabetes on rat choroid plexus ion transporter expression. Diabetes 52:1496–1501

Article  CAS  PubMed  Google Scholar 

Galuska D, Kotova O, Barres R, Chibalina D, Benziane B, Chibalin AV (2009) Altered expression and insulin-induced trafficking of Na+-K+-ATPase in rat skeletal muscle: effects of high-fat diet and exercise. Am J Physiol Endocrinol Metab 297:E38–49

Article  CAS  PubMed  Google Scholar 

Geering K (2006) FXYD proteins: new regulators of Na-K-ATPase. Am J Physiol Ren Physiol 290:F241–250

Article  CAS  Google Scholar 

Geering K (2008) Functional roles of Na,K-ATPase subunits. Curr Opin Nephrol Hypertens 17:526–532

Article  CAS  PubMed  Google Scholar 

Green HJ, Duhamel TA, Foley KP, Ouyang J, Smith IC, Stewart RD (2007) Glucose supplements increase human muscle in vitro Na+-K+-ATPase activity during prolonged exercise. Am J Physiol Regul Integr Comp Physiol 293:R354–362

Article  CAS  PubMed  Google Scholar 

Gusarova GA, Dada LA, Kelly AM, Brodie C, Witters LA, Chandel NS, Sznajder JI (2009) Alpha1-AMP-activated protein kinase regulates hypoxia-induced Na,K-ATPase endocytosis via direct phosphorylation of protein kinase C zeta. Mol Cell Biol 29:3455–3464

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hansen O (2001) The alpha1 isoform of Na+,K+-ATPase in rat soleus and extensor digitorum longus. Acta Physiol Scand 173:335–341

Article  CAS  PubMed  Google Scholar 

Hardie DG (2018) Keeping the home fires burning: AMP-activated protein kinase. J R Soc Interface 15

Hardie DG, Ross FA, Hawley SA (2012a) AMP-activated protein kinase: a target for drugs both ancient and modern. Chem Biol 19:1222–1236

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hardie DG, Ross FA, Hawley SA (2012b) AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol 13:251–262

Article  CAS  PubMed  PubMed Central  Google Scholar 

He S, Shelly DA, Moseley AE, James PF, James JH, Paul RJ, Lingrel JB (2001) The alpha(1)- and alpha(2)-isoforms of Na-K-ATPase play different roles in skeletal muscle contractility. Am J Physiol Regul Integr Comp Physiol 281:R917–925

Article  CAS  PubMed  Google Scholar 

Hostrup M, Lemminger AK, Thomsen LB, Schaufuss A, Alsoe TL, Bergen GK, Bell AB, Bangsbo J, Thomassen M (2023) High-intensity training represses FXYD5 and glycosylates Na,K-ATPase in type II muscle fibres, which are linked with improved muscle K(+) handling and performance. Int J Mol Sci 24

Ingwersen MS, Kristensen M, Pilegaard H, Wojtaszewski JF, Richter EA, Juel C (2011) Na,K-ATPase activity in mouse muscle is regulated by AMPK and PGC-1alpha. J Membr Biol 242:1–10

Article  CAS  PubMed  Google Scholar 

Jan V, Mis K, Nikolic N, Dolinar K, Petric M, Bone A, Thoresen GH, Rustan AC, Mars T, Chibalin AV, Pirkmajer S (2021) Effect of differentiation, de novo innervation, and electrical pulse stimulation on mRNA and protein expression of Na+,K+-ATPase, FXYD1, and FXYD5 in cultured human skeletal muscle cells. PLoS ONE 16:e0247377

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kjobsted R, Hingst JR, Fentz J, Foretz M, Sanz MN, Pehmoller C, Shum M, Marette A, Mounier R, Treebak JT, Wojtaszewski JFP, Viollet B, Lantier L (2018) AMPK in skeletal muscle function and metabolism. FASEB J 32:1741–1777

Article 

Comments (0)

No login
gif