Abdelmoez AM, Sardon Puig L, Smith JAB, Gabriel BM, Savikj M, Dollet L, Chibalin AV, Krook A, Zierath JR, Pillon NJ (2020) Comparative profiling of skeletal muscle models reveals heterogeneity of transcriptome and metabolism. Am J Physiol Cell Physiol 318:C615–C626
Ackermann U, Geering K (1990) Mutual dependence of Na,K-ATPase alpha- and beta-subunits for correct posttranslational processing and intracellular transport. FEBS Lett 269:105–108
Article CAS PubMed Google Scholar
Benziane B, Chibalin AV (2008) Frontiers: skeletal muscle sodium pump regulation: a translocation paradigm. Am J Physiol Endocrinol Metab 295:E553–558
Article CAS PubMed Google Scholar
Benziane B, Bjornholm M, Lantier L, Viollet B, Zierath JR, Chibalin AV (2009) AMP-activated protein kinase activator A-769662 is an inhibitor of the na(+)-K(+)-ATPase. Am J Physiol Cell Physiol 297:C1554–1566
Article CAS PubMed Google Scholar
Benziane B, Bjornholm M, Pirkmajer S, Austin RL, Kotova O, Viollet B, Zierath JR, Chibalin AV (2012) Activation of AMP-activated protein kinase stimulates Na+,K+-ATPase activity in skeletal muscle cells. J Biol Chem 287:23451–23463
Article CAS PubMed PubMed Central Google Scholar
Biron R, Burger A, Chinet A, Clausen T, Dubois-Ferriere R (1979) Thyroid hormones and the energetics of active sodium-potassium transport in mammalian skeletal muscles. J Physiol 297:47–60
Article CAS PubMed PubMed Central Google Scholar
Blanco G, Mercer RW (1998) Isozymes of the Na-K-ATPase: heterogeneity in structure, diversity in function. Am J Physiol 275:F633–650
Boon H, Kostovski E, Pirkmajer S, Song M, Lubarski I, Iversen PO, Hjeltnes N, Widegren U, Chibalin AV (2012) Influence of chronic and acute spinal cord injury on skeletal muscle Na+-K+-ATPase and phospholemman expression in humans. Am J Physiol Endocrinol Metab 302:E864–871
Article CAS PubMed Google Scholar
Chibalin AV, Kovalenko MV, Ryder JW, Feraille E, Wallberg-Henriksson H, Zierath JR (2001) Insulin- and glucose-induced phosphorylation of the na(+),K(+)-adenosine triphosphatase alpha-subunits in rat skeletal muscle. Endocrinology 142:3474–3482
Article CAS PubMed Google Scholar
Chibalin AV, Heiny JA, Benziane B, Prokofiev AV, Vasiliev AV, Kravtsova VV, Krivoi II (2012) Chronic nicotine modifies skeletal muscle Na,K-ATPase activity through its interaction with the nicotinic acetylcholine receptor and phospholemman. PLoS ONE 7:e33719
Article CAS PubMed PubMed Central Google Scholar
Christiansen D (2019) Molecular stressors underlying exercise training-induced improvements in K(+) regulation during exercise and na(+),K(+) -ATPase adaptation in human skeletal muscle. Acta Physiol (Oxf) 225:e13196
Christiansen D, Murphy RM, Bangsbo J, Stathis CG, Bishop DJ (2018) Increased FXYD1 and PGC-1alpha mRNA after blood flow-restricted running is related to fibre type-specific AMPK signalling and oxidative stress in human muscle. Acta Physiol (Oxf) 223:e13045
Article CAS PubMed Google Scholar
Christiansen D, Eibye KH, Rasmussen V, Voldbye HM, Thomassen M, Nyberg M, Gunnarsson TGP, Skovgaard C, Lindskrog MS, Bishop DJ, Hostrup M, Bangsbo J (2019) Cycling with blood flow restriction improves performance and muscle K(+) regulation and alters the effect of anti-oxidant infusion in humans. J Physiol 597:2421–2444
Article CAS PubMed PubMed Central Google Scholar
Clausen T (2003) Na+-K + pump regulation and skeletal muscle contractility. Physiol Rev 83:1269–1324
Article CAS PubMed Google Scholar
Crambert G, Fuzesi M, Garty H, Karlish S, Geering K (2002) Phospholemman (FXYD1) associates with Na,K-ATPase and regulates its transport properties. Proc Natl Acad Sci U S A 99:11476–11481
Article CAS PubMed PubMed Central Google Scholar
Dolinar K, Jan V, Pavlin M, Chibalin AV, Pirkmajer S (2018) Nucleosides block AICAR-stimulated activation of AMPK in skeletal muscle and cancer cells. Am J Physiol Cell Physiol
Efendiev R, Bertorello AM, Zandomeni R, Cinelli AR, Pedemonte CH (2002) Agonist-dependent regulation of renal Na+,K+-ATPase activity is modulated by intracellular sodium concentration. J Biol Chem 277:11489–11496
Article CAS PubMed Google Scholar
Egleton RD, Campos CC, Huber JD, Brown RC, Davis TP (2003) Differential effects of diabetes on rat choroid plexus ion transporter expression. Diabetes 52:1496–1501
Article CAS PubMed Google Scholar
Galuska D, Kotova O, Barres R, Chibalina D, Benziane B, Chibalin AV (2009) Altered expression and insulin-induced trafficking of Na+-K+-ATPase in rat skeletal muscle: effects of high-fat diet and exercise. Am J Physiol Endocrinol Metab 297:E38–49
Article CAS PubMed Google Scholar
Geering K (2006) FXYD proteins: new regulators of Na-K-ATPase. Am J Physiol Ren Physiol 290:F241–250
Geering K (2008) Functional roles of Na,K-ATPase subunits. Curr Opin Nephrol Hypertens 17:526–532
Article CAS PubMed Google Scholar
Green HJ, Duhamel TA, Foley KP, Ouyang J, Smith IC, Stewart RD (2007) Glucose supplements increase human muscle in vitro Na+-K+-ATPase activity during prolonged exercise. Am J Physiol Regul Integr Comp Physiol 293:R354–362
Article CAS PubMed Google Scholar
Gusarova GA, Dada LA, Kelly AM, Brodie C, Witters LA, Chandel NS, Sznajder JI (2009) Alpha1-AMP-activated protein kinase regulates hypoxia-induced Na,K-ATPase endocytosis via direct phosphorylation of protein kinase C zeta. Mol Cell Biol 29:3455–3464
Article CAS PubMed PubMed Central Google Scholar
Hansen O (2001) The alpha1 isoform of Na+,K+-ATPase in rat soleus and extensor digitorum longus. Acta Physiol Scand 173:335–341
Article CAS PubMed Google Scholar
Hardie DG (2018) Keeping the home fires burning: AMP-activated protein kinase. J R Soc Interface 15
Hardie DG, Ross FA, Hawley SA (2012a) AMP-activated protein kinase: a target for drugs both ancient and modern. Chem Biol 19:1222–1236
Article CAS PubMed PubMed Central Google Scholar
Hardie DG, Ross FA, Hawley SA (2012b) AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol 13:251–262
Article CAS PubMed PubMed Central Google Scholar
He S, Shelly DA, Moseley AE, James PF, James JH, Paul RJ, Lingrel JB (2001) The alpha(1)- and alpha(2)-isoforms of Na-K-ATPase play different roles in skeletal muscle contractility. Am J Physiol Regul Integr Comp Physiol 281:R917–925
Article CAS PubMed Google Scholar
Hostrup M, Lemminger AK, Thomsen LB, Schaufuss A, Alsoe TL, Bergen GK, Bell AB, Bangsbo J, Thomassen M (2023) High-intensity training represses FXYD5 and glycosylates Na,K-ATPase in type II muscle fibres, which are linked with improved muscle K(+) handling and performance. Int J Mol Sci 24
Ingwersen MS, Kristensen M, Pilegaard H, Wojtaszewski JF, Richter EA, Juel C (2011) Na,K-ATPase activity in mouse muscle is regulated by AMPK and PGC-1alpha. J Membr Biol 242:1–10
Article CAS PubMed Google Scholar
Jan V, Mis K, Nikolic N, Dolinar K, Petric M, Bone A, Thoresen GH, Rustan AC, Mars T, Chibalin AV, Pirkmajer S (2021) Effect of differentiation, de novo innervation, and electrical pulse stimulation on mRNA and protein expression of Na+,K+-ATPase, FXYD1, and FXYD5 in cultured human skeletal muscle cells. PLoS ONE 16:e0247377
Article CAS PubMed PubMed Central Google Scholar
Kjobsted R, Hingst JR, Fentz J, Foretz M, Sanz MN, Pehmoller C, Shum M, Marette A, Mounier R, Treebak JT, Wojtaszewski JFP, Viollet B, Lantier L (2018) AMPK in skeletal muscle function and metabolism. FASEB J 32:1741–1777
Comments (0)