TAM-associated CASQ1 mutants diminish intracellular Ca2+ content and interfere with regulation of SOCE

Allen DG, Lamb GD, Westerblad H (2008) Skeletal muscle fatigue: Cellular mechanisms. Physiol Rev 88:287–332. https://doi.org/10.1152/physrev.00015.2007

Article  PubMed  Google Scholar 

Barone V, Del Re V, Gamberucci A, Polverino V, Galli L, Rossi D, Costanzi E, Toniolo L, Berti G, Malandrini A, Ricci G, Siciliano G, Vattemi G, Tomelleri G, Pierantozzi E, Spinozzi S, Volpi N, Fulceri R, Battistutta R, Reggiani C, Sorrentino V (2017) Identification and characterization of three novel mutations in the CASQ1 gene in four patients with tubular aggregate myopathy. Hum Mutat 38:1761–1773. https://doi.org/10.1002/humu.23338

Article  PubMed  Google Scholar 

Bauché S, Vellieux G, Sternberg D, Fontenille MJ, De Bruyckere E, Davoine CS, Brochier G, Messéant J, Wolf L, Fardeau M, Lacène E, Romero N, Koenig J, Fournier E, Hantaï D, Streichenberger N, Manel V, Lacour A, Nadaj-Pakleza A, Sukno S, Bouhour F, Laforêt P, Fontaine B, Strochlic L, Eymard B, Chevessier F, Stojkovicm T, Nicole S (2017) Mutations in GFPT1-related congenital myasthenic syndromes are associated with synaptic morphological defects and underlie a tubular aggregate myopathy with synaptopathy. J Neurol 264:1791–1803. https://doi.org/10.1007/s00415-017-8569-x

Article  PubMed  Google Scholar 

Beard NA, Dulhunty AF (2015) C-terminal residues of skeletal muscle calsequestrin are essential for calcium binding and for skeletal ryanodine receptor inhibition. Skelet Muscle 22:5–6. https://doi.org/10.1186/s13395-015-0029-7

Article  Google Scholar 

Biral D, Volpe P, Damiani E, Margreth A (1992) Coexistence of two calsequestrin isoforms in rabbit slow-twitch skeletal muscle fibers. FEBS Lett 299:175–178. https://doi.org/10.1016/0014-5793(92)80241-8

Article  PubMed  Google Scholar 

Blaauw B, Del Piccolo P, Rodriguez L, Hernandez Gonzalez VH, Agatea L, Solagna F, Mammano F, Pozzan T, Schiaffino S (2012) No evidence for inositol 1,4,5-trisphosphate-dependent Ca2+ release in isolated fibers of adult mouse skeletal muscle. J Gen Physiol 140:235–241. https://doi.org/10.1085/jgp.201110747

Article  PubMed  PubMed Central  Google Scholar 

Böhm J, Laporte J (2018) Gain-of-function mutations in STIM1 and ORAI1 causing tubular aggregate myopathy and Stormorken syndrome. Cell Calcium 76:1–9. https://doi.org/10.1016/j.ceca.2018.07.008

Article  PubMed  Google Scholar 

Böhm J, Chevessier F, Maues De Paula A, Koch C, Attarian S, Feger C, Hantaï D, Laforêt P, Ghorab K, Vallat JM, Fardeau M, Figarella-Branger D, Pouget J, Romero NB, Koch M, Ebel C, Levy N, Krahn M, Eymard B, Bartoli M, Laporte J (2013) Constitutive activation of the calcium sensor STIM1 causes tubular-aggregate myopathy. Am J Hum Genet 92:271–278. https://doi.org/10.1016/j.ajhg.2012.12.007

Article  PubMed  PubMed Central  Google Scholar 

Böhm J, Bulla M, Urquhart JE, Malfatti E, Williams SG, O’Sullivan J, Szlauer A, Koch C, Baranello G, Mora M, Ripolone M, Violano R, Moggio M, Kingston H, Dawson T, DeGoede CG, Nixon J, Boland A, Deleuze JF, Romero N, Newman WG, Demaurex N, Laporte J (2017) ORAI1 mutations with distinct channel gating defects in tubular aggregate myopathy. Hum Mutat 38:426–438. https://doi.org/10.1002/humu.23172

Article  PubMed  Google Scholar 

Böhm J, Lornage X, Chevessier F, Birck C, Zanotti S, Cudia P, Bulla M, Granger F, Bui M, Sartori M, Schneider-Gold C, Malfatti E, Romero NB, Mora M, Laporte J (2018b) CASQ1 mutations impair calsequestrin polymerization and cause tubular aggregate myopathy. Acta Neuropathol 135:149–151. https://doi.org/10.1007/s00401-017-1775-x

Article  PubMed  Google Scholar 

Boncompagni S, Thomas M, Lopez JR, Allen PD, Yuan Q, Kranias EG, Franzini-Armstrong C, Perez CF (2012) Triadin/Junctin double null mouse reveals a differential role for Triadin and Junctin in anchoring CASQ to the jSR and regulating ca(2+) homeostasis. PLoS ONE 7:e39962. https://doi.org/10.1371/journal.pone.0039962

Article  PubMed  PubMed Central  Google Scholar 

Brande LV, Bauché S, Pérez-Guàrdia L, Sternberg D, Seferian AM, Malfatti E, Silva-Rojas R, Labasse C, Chevessier F, Carlier P, Eymard B, Romero NB, Laporte J, Servais L, Gidaro T, Böhm J (2023) Pathogenic DPAGT1 variants in limb-girdle congenital myasthenic syndrome (LG-CMS) associated with tubular aggregates and ORAI1 hypoglycosylation. Neuropathol Appl Neurobiol Dec 20:e12952. https://doi.org/10.1111/nan.12952

Article  Google Scholar 

Choi JH, Huang M, Hyun C, Oh MR, Lee KJ, Cho CH, Lee EH (2019) A muscular hypotonia-associated STIM1 mutant at R429 induces abnormalities in intracellular Ca2+ movement and extracellular Ca2+ entry in skeletal muscle. Sci Rep 16:19140. https://doi.org/10.1038/s41598-019-55745-z

Article  Google Scholar 

Cordero-Sanchez C, Riva B, Reano S, Clemente N, Zaggia I, Ruffinatti FA, Potenzieri A, Pirali T, Raffa S, Sangaletti S, Colombo MP, Bertoni A, Garibaldi M, Filigheddu N, Genazzani AA (2019) A luminal EF-hand mutation in STIM1 in mice causes the clinical hallmarks of tubular aggregate myopathy. Dis Model Mech 13:dmm041111. https://doi.org/10.1242/dmm.041111

Article  PubMed  PubMed Central  Google Scholar 

Cordero-Sanchez C, Pessolano E, Riva B, Vismara M, Trivigno SMG, Clemente N, Aprile S, Ruffinatti FA, Portararo P, Filigheddu N, Zaggia I, Bhela IP, Serafini M, Pirali T, Colombo MP, Torti M, Sangaletti S, Bertoni A, Genazzani AA (2022) CIC-39Na reverses the thrombocytopenia that characterizes tubular aggregate myopathy. Blood Adv 9(15):4471–4484. https://doi.org/10.1182/bloodadvances.2021006378

Article  Google Scholar 

Damiani E, Volpe P, Margreth A (1990) Coexpression of two isoforms of calsequestrin in rabbit slow-twitch muscle. J Muscle Res Cell Motil 11:522–530. https://doi.org/10.1007/BF01745219

Article  PubMed  Google Scholar 

Feske S, Gwack Y, Prakriya M, Srikanth S, Puppel SH, Tanasa B, Hogan PG, Lewis RS, Daly M, Rao A (2006) A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature 441:179–185. https://doi.org/10.1038/nature04702

Article  PubMed  Google Scholar 

Franzini-Armstrong C, Kennery LJ, Varriano-Martson E (1987) The structure of calsequestrin in triads of vertebrate skeletal muscle: a deep-etch study. J Cell Biol 105:49–56. https://doi.org/10.1083/jcb.105.1.49

Article  PubMed  Google Scholar 

Funk F, Ceuterick-de Groote C, Martin JJ, Meinhardt A, Taratuto AL, De Bleecker J, Van Coster R, De Paepe B, Schara U, Vorgerd M, Häusler M, Koppi S, Maschke M, De Jonghe P, Van Maldergem L, Noel S, Zimmermann CW, Wirth S, Isenmann S, Stadler R, Schröder JM, Schulz JB, Weis J, Claeys KG (2013) Morphological spectrum and clinical features of myopathies with tubular aggregates. Histol Histopathol 28:1041–1054. https://doi.org/10.14670/HH-28.1041

Article  PubMed  Google Scholar 

Gang Q, Bettencourt C, Brady S, Holton JL, Healy EG, McConville J, Morrison PJ, Ripolone M, Violano R, Sciacco M, Moggio M, Mora M, Mantegazza R, Zanotti S, Wang Z, Yuan Y, Liu WW, Beeson D, Hanna M, Houlden H (2022) Genetic defects are common in myopathies with tubular aggregates. Ann Clin Transl Neurol 9:4–15. https://doi.org/10.1002/acn3.51477

Article  PubMed  Google Scholar 

Gissel H, Clausen T (2000) Excitation-induced Ca2+ influx in rat soleus and EDL muscle: mechanisms and effects on cellular integrity. Am J Physiol Regul Integr Comp Physiol 279(3):R917–R924. https://doi.org/10.1152/ajpregu.2000.279.3.R917

Glover L, Quinn S, Ryan M, Pette D, Ohlendieck K (2002) Supramolecular calsequestrin complex. Eur J Biochem 269:4607–4616. https://doi.org/10.1046/j.1432-1033.2002.03160.x

Article  PubMed  Google Scholar 

Grosse J, Braun A, Varga-Szabo D, Beyersdorf N, Schneider B, Zeitlmann L, Hanke P, Schropp P, Mühlstedt S, Zorn C, Huber M, Schmittwolf C, Jagla W, Yu P, Kerkau T, Schulze H, Nehls M, Nieswandt B (2007) An EF hand mutation in Stim1 causes premature platelet activation and bleeding in mice. J Clin Invest 117:3540–3550. https://doi.org/10.1172/JCI32312

Article  PubMed  PubMed Central  Google Scholar 

Hanna AD, Lee CS, Babcock, Wang H, Recio J, Hamilton SL (2021) Pathological mechanisms of vacuolar aggregate myopathy arising from a Casq1 mutation. FASEB J 35:e21349. https://doi.org/10.1096/fj.202001653RR

Article  PubMed  Google Scholar 

Jeong SY, Oh MR, Choi JH, Woo JS, Lee EH (2021) Calsequestrin 1 is an active Partner of Stromal Interaction Molecule 2 in skeletal muscle. Cells 10:2821. https://doi.org/10.3390/cells10112821

Article  PubMed  PubMed Central  Google Scholar 

Kobayashi YM, Alseikhan BA, Jones LR (2000) Localization and characterization of the calsequestrin-binding domain of triadin 1. Evidence for a charged beta-strand in mediating the protein-protein interaction. J Biol Chem 275:17639–17646. https://doi.org/10.1074/jbc.M002091200

Article  PubMed  Google Scholar 

Lacruz RS, Feske S (2015) Diseases caused by mutations in ORAI1 and STIM1. Ann N Y Acad Sci 1356:45–79. https://doi.org/10.1111/nyas.12938

Article  PubMed  PubMed Central  Google Scholar 

Lewis KM, Ronish LA, Ríos E, Kang C (2015) Characterization of Two Human Skeletal Calsequestrin Mutants Implicated in malignant hyperthermia and Vacuolar Aggregate Myopathy. J Biol Chem 290:28665–28674. https://doi.org/10.1074/jbc.M115.686261

Article  PubMed  PubMed Central  Google Scholar 

Luo HY, Zhao L, Mao CY, Yang ZH, Yang J, Wang YL, Niu HX, Liu YT, Shi CH, Xu YM (2019) Novel compound heterozygous GFPT1 mutations in a family with limb-girdle myasthenia with tubular aggregates. Neuromuscul Disord 29:549–553. https://doi.org/10.1016/j.nmd.2019.05.008

Article  PubMed 

Comments (0)

No login
gif