ERBB Receptors and Their Ligands in the Developing Mammary Glands of Different Species: Fifteen Characters in Search of an Author

Ciarloni L, Mallepell S, Brisken C. Amphiregulin is an essential mediator of estrogen receptor alpha function in mammary gland development. Proc Natl Acad Sci U S A 2007;104:5455–60. https://doi.org/10.1073/pnas.0611647104

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brisken C, Park S, Vass T, Lydon JP, O’Malley BW, Weinberg RA. A paracrine role for the epithelial progesterone receptor in mammary gland development. Proc Natl Acad Sci U S A 1998;95:5076–81. https://doi.org/10.1073/PNAS.95.9.5076

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hovey RC, Mcfadden TB, Akers RM. Regulation of Mammary Gland Growth and Morphogenesis by the Mammary Fat Pad: A Species Comparison. vol. 4. 1999.

Horigan KC, Trott JF, Barndollar AS, Scudder JM, Blauwiekel RM, Hovey RC. Hormone interactions confer specific proliferative and histomorphogenic responses in the porcine mammary gland. Domest Anim Endocrinol 2009;37:124–38. https://doi.org/10.1016/j.domaniend.2009.04.002

Article  CAS  PubMed  Google Scholar 

Russo J, Rivera R, Russo IH. Influence of age and parity on the development of the human breast. Breast Cancer Res Treat 1992;23:2–218.

Article  Google Scholar 

Santos M, Marcos R, Faustino AMR. Histological study of canine mammary gland during the oestrous cycle. Reprod Domest Anim 2010;45. https://doi.org/10.1111/J.1439-0531.2009.01536.X

Hovey RC, Trott JF, Vonderhaar BK. Establishing a framework for the functional mammary gland: from endocrinology to morphology. J Mammary Gland Biol Neoplasia 2002;7:17–38. https://doi.org/10.1023/a:1015766322258

Article  PubMed  Google Scholar 

Brisken C, Ataca D. Endocrine hormones and local signals during the development. Wiley Interdiscip Rev Dev Biol 2015;4:181–95. https://doi.org/10.1002/wdev.172

Article  CAS  PubMed  Google Scholar 

Schroeder JA, Lee DC. Dynamic expression and activation of ERBB receptors in the developing mouse mammary gland. Cell Growth Differ Mol Biol J Am Assoc Cancer Res 1998;9:451–64.

CAS  Google Scholar 

Sternlicht MD, Sunnarborg SW. The ADAM17-amphiregulin-EGFR axis in mammary development and cancer. J Mammary Gland Biol Neoplasia 2008;13:181–94. https://doi.org/10.1007/s10911-008-9084-6

Article  PubMed  PubMed Central  Google Scholar 

Muraoka-Cook RS, Feng SM, Strunk KE, Earp SH. ErbB4/HER4: role in mammary gland development, differentiation and growth inhibition. J Mammary Gland Biol Neoplasia 2008;13:235–46. https://doi.org/10.1007/s10911-008-9080-x

Article  PubMed  PubMed Central  Google Scholar 

Rowson AR, Daniels KM, Ellis SE, Hovey RC. Growth and development of the mammary glands of livestock: a veritable barnyard of opportunities. Semin Cell Dev Biol 2012;23:557–66. https://doi.org/10.1016/j.semcdb.2012.03.018

Article  PubMed  Google Scholar 

Wang Z. ErbB receptors and cancer. Methods Mol. Biol., vol. 1652, Humana Press Inc.; 2017, p. 3–35. https://doi.org/10.1007/978-1-4939-7219-7_1

Olayioye MA, Neve RM, Lane HA, Hynes NE. The ErbB signaling network: receptor heterodimerization in developmnet and cancer. EMBO J 2000;19:3159–67. https://doi.org/10.1093/emboj/19.13.3159

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yarden Y, Sliwkowski MX. Untangling the ErbB signalling network. Nat Rev Mol Cell Biol 2001;2:127–37. https://doi.org/10.1038/35052073

Article  CAS  PubMed  Google Scholar 

Cohen S, Ushiro H, Stoscheck C, Chinkers M. A native 170,000 epidermal growth factor receptor-kinase complex from shed plasma membrane vesicles. J Biol Chem 1982;257:1523–31. https://doi.org/10.1016/S0021-9258(19)68224-4

Article  CAS  PubMed  Google Scholar 

Ullrich A, Coussens L, Hayflick JS, Dull TJ, Gray A, Tam AW, et al. Human epidermal growth factor receptor cDNA sequence and aberrant expression of the amplified gene in A431 epidermoid carcinoma cells. Nature 1984;309:418–25. https://doi.org/10.1038/309418a0

Article  CAS  PubMed  Google Scholar 

Bajaj M, Waterfield MD, Schlessinger J, Taylor WR, Blundell T. On the tertiary structure of the extracellular domains of the epidermal growth factor and insulin receptors. Biochim Biophys Acta 1987;916:220–6. https://doi.org/10.1016/0167-4838(87)90112-9

Article  CAS  PubMed  Google Scholar 

Lax I, Johnson A, Howk R, Sap J, Bellot F, Winkler M, et al. Chicken epidermal growth factor (EGF) receptor: cDNA cloning, expression in mouse cells, and differential binding of EGF and transforming growth factor alpha. Mol Cell Biol 1988;8:1970–8. https://doi.org/10.1128/mcb.8.5.1970

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ward CW, Hoyne PA, Flegg RH. Insulin and epidermal growth factor receptors contain the cysteine repeat motif found in the tumor necrosis factor receptor. Proteins Struct Funct Bioinforma 1995;22:141–53. https://doi.org/10.1002/prot.340220207

Article  CAS  Google Scholar 

Lin SY, Makino K, Xia W, Matin A, Wen Y, Kwong KY, et al. Nuclear localization of EGF receptor and its potential new role as a transcription factor. Nat Cell Biol 2001;3:802–8. https://doi.org/10.1038/ncb0901-802

Article  CAS  PubMed  Google Scholar 

Shi F, Telesco SE, Liu Y, Radhakrishnan R, Lemmona MA. ErbB3/HER3 intracellular domain is competent to bind ATP and catalyze autophosphorylation. Proc Natl Acad Sci U S A 2010;107:7692–7. https://doi.org/10.1073/pnas.1002753107

Article  PubMed  PubMed Central  Google Scholar 

Sardi SP, Murtie J, Koirala S, Patten BA, Corfas G. Presenilin-dependent ErbB4 nuclear signaling regulates the timing of astrogenesis in the developing brain. Cell 2006;127:185–97. https://doi.org/10.1016/J.CELL.2006.07.037

Article  CAS  PubMed  Google Scholar 

Schechter Y, Hernaez L, Schlessingert J, Cuatrecasas P. Local aggregation of hormone-receptor complexes is required for activation by epidermal growth factor. Nature 1979;278:835–8. https://doi.org/10.1038/278835a0

Article  CAS  PubMed  Google Scholar 

Yarden Y, Schlessinger J. Epidermal growth factor induces rapid, reversible aggregation of the purified epidermal growth factor receptor. Biochemistry 1987;26:1443–51. https://doi.org/10.1021/bi00379a035

Article  CAS  PubMed  Google Scholar 

Ferguson KM, Darling PJ, Mohan MJ, Macatee TL, Lemmon MA. Extracellular domains drive homo- but not hetero- dimerization of erbB receptors. EMBO J 2000;19:4632–43. https://doi.org/10.1093/emboj/19.17.4632

Article  CAS  PubMed  PubMed Central  Google Scholar 

Berger MB, Mendrola JM, Lemmon MA. ErbB3/HER3 does not homodimerize upon neuregulin binding at the cell surface. FEBS Lett 2004;569:332–6. https://doi.org/10.1016/j.febslet.2004.06.014

Article  CAS  PubMed  Google Scholar 

Wehrman TS, Raab WJ, Casipit CL, Doyonnas R, Pomerantz JH, Blau HM. A system for quantifying dynamic protein interactions defines a role for Herceptin in modulating ErbB2 interactions. Proc Natl Acad Sci U S A 2006;103:19063–8. https://doi.org/10.1073/pnas.0605218103

Article  CAS  PubMed  PubMed Central  Google Scholar 

Citri A, Skaria KB, Yarden Y. The deaf and the dumb: the biology of ErbB-2 and ErbB-3. Exp Cell Res 2003;284:54–65. https://doi.org/10.1016/S0014-4827(02)00101-5

Article  CAS  PubMed  Google Scholar 

Hendriks BS, Opresko LK, Wiley HS, Lauffenburger D. Quantitative analysis of HER2-mediated effects on HER2 and epidermal growth factor receptor endocytosis. Distribution of homo- and heterodimers depends on relative HER2 levels. J Biol Chem 2003;278:23343–51. https://doi.org/10.1074/jbc.M300477200

Article  CAS  PubMed  Google Scholar 

Holbro T, Beerli RR, Maurer F, Koziczak M, Barbas CF, Hynes NE. The ErbB2/ErbB3 heterodimer functions as an oncogenic unit: ErbB2 requires ErbB3 to drive breast tumor cell proliferation. Proc Natl Acad Sci U S A 2003;100:8933–8. https://doi.org/10.1073/pnas.1537685100

Article  CAS  PubMed  PubMed Central  Google Scholar 

Roskoski R. The ErbB/HER family of protein-tyrosine kinases and cancer. Pharmacol Res 2014;79:34–74. https://doi.org/10.1016/j.phrs.2013.11.002

Article  CAS  PubMed  Google Scholar 

Wilson KJ, Gilmore JL, Foley J, Lemmon MA, Riese Ii DJ. Functional selectivity of EGF family peptide growth factors: implications for cancer. Pharmacol Ther 2008;122:1–8. https://doi.org/10.1016/j.pharmthera.2008.11.008

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jones JT, Akita RW, Sliwkowski MX. Binding specificities and affinities of egf domains for ErbB receptors. FEBS Lett 1999;447:227–31. https://doi.org/10.1016/S0014-5793(99)00283-5

Article  CAS  PubMed  Google Scholar 

Harris AL, Nicholson S, Richard J, Sainsbury C, Farndon J, Wright C. Epidermal growth factor receptors in breast cancer: Association with early relapse and death, poor response to hormones and interactions with neu. J Steroid Biochem 1989;34:123–31. https://doi.org/10.1016/0022-4731(89)90072-1

Article  CAS  PubMed  Google Scholar 

Gullick WJ. The type 1 growth factor receptors and their ligands considered as a complex system. Endocr Relat Cancer 2001;8:75–82. https://doi.org/10.1677/erc.0.0080075

Article  CAS  PubMed  Google Scholar 

Nagata K, Kohda D, Hatanaka H, Ichikawa S, Matsuda S, Yamamoto T, et al. Solution structure of the epidermal growth factor-like domain of heregulin-alpha, a ligand for p180erbB-4. EMBO J 1994;13:3517–23. https://doi.org/10.1002/j.1460-2075.1994.tb06658.x

Article  CAS  PubMed 

留言 (0)

沒有登入
gif