Hinck L, Silberstein GB. Key stages in mammary gland development: the mammary end bud as a motile organ. Breast Cancer Res. 2005;7:245.
Article CAS PubMed PubMed Central Google Scholar
Brisken C, Park S, Vass T, Lydon JP, O’Malley BW, Weinberg RA. A paracrine role for the epithelial progesterone receptor in mammary gland development. Proc Natl Acad Sci U S A. 1998;95:5076–81.
Article ADS CAS PubMed PubMed Central Google Scholar
Englund JI, Bui H, Dinç DD, Paavolainen O, McKenna T, Laitinen S, et al. Laminin matrix adhesion regulates basal mammary epithelial cell identity. J Cell Sci. 2022;135:jcs260232.
Article CAS PubMed Google Scholar
Englund JI, Ritchie A, Blaas L, Cojoc H, Pentinmikko N, Döhla J, et al. Laminin alpha 5 regulates mammary gland remodeling through luminal cell differentiation and Wnt4-mediated epithelial crosstalk. Development. 2021;148:dev199281.
Article CAS PubMed PubMed Central Google Scholar
Paavolainen O, Peuhu E. Integrin-mediated adhesion and mechanosensing in the mammary gland. Semin Cell Dev Biol. 2021;114:113–25
Peuhu E, Jacquemet G, Scheele CLGJ, Isomursu A, Laisne M-C, Koskinen LM, et al. MYO10-filopodia support basement membranes at pre-invasive tumor boundaries. Dev Cell. 2022;57:2350–2364e7.
Article CAS PubMed Google Scholar
Caruso M, Huang S, Mourao L, Scheele CLGJ. A mammary Organoid Model to study branching morphogenesis. Front Physiol. 2022;13:826107.
Article PubMed PubMed Central Google Scholar
Howard BA, Lu P. Stromal regulation of embryonic and postnatal mammary epithelial development and differentiation. Semin Cell Dev Biol. 2014;25–26:43–51.
Nguyen-Ngoc K-V, Cheung KJ, Brenot A, Shamir ER, Gray RS, Hines WC, et al. ECM microenvironment regulates collective migration and local dissemination in normal and malignant mammary epithelium. Proc Natl Acad Sci U S A. 2012;109:E2595–604.
Article CAS PubMed PubMed Central Google Scholar
Sokol ES, Miller DH, Breggia A, Spencer KC, Arendt LM, Gupta PB. Growth of human breast tissues from patient cells in 3D hydrogel scaffolds. Breast Cancer Res. 2016;18:19.
Article PubMed PubMed Central Google Scholar
Sanders ME, Schuyler PA, Simpson JF, Page DL, Dupont WD. Continued observation of the natural history of low-grade ductal carcinoma in situ reaffirms proclivity for local recurrence even after more than 30 years of follow-up. Mod Pathol. 2015;28:662–9.
Franceschi S, Levi F, La Vecchia C, Randimbison L, Te VC. Second cancers following in situ carcinoma of the breast. Int J Cancer. 1998;77:392–5.
Article CAS PubMed Google Scholar
Simian M, Hirai Y, Navre M, Werb Z, Lochter A, Bissell MJ. The interplay of matrix metalloproteinases, morphogens and growth factors is necessary for branching of mammary epithelial cells. Development. 2001;128:3117–31.
Article CAS PubMed Google Scholar
Gudjonsson T, Rønnov-Jessen L, Villadsen R, Rank F, Bissell MJ, Petersen OW. Normal and tumor-derived myoepithelial cells differ in their ability to interact with luminal breast epithelial cells for polarity and basement membrane deposition. J Cell Sci. 2002;115:39–50.
Article CAS PubMed Google Scholar
Linnemann JR, Meixner LK, Miura H, Scheel CH. An organotypic 3D assay for primary human mammary epithelial cells that recapitulates branching morphogenesis. Methods Mol Biol. 2017;1612:125–37.
Article CAS PubMed Google Scholar
Nelson CM, VanDuijn MM, Inman JL, Fletcher DA, Bissell MJ. Tissue geometry determines sites of Mammary branching morphogenesis in organotypic cultures. Science. 2006;314:298–300.
Article ADS CAS PubMed PubMed Central Google Scholar
Pallegar NK, Garland CJ, Mahendralingam M, Viloria-Petit AM, Christian SL. A novel 3-Dimensional co-culture Method reveals a partial mesenchymal to epithelial transition in breast Cancer cells Induced by adipocytes. J Mammary Gland Biol Neoplasia. 2019;24:85–97.
Ren G, Sharma V, Letson J, Walia Y, Fernando V, Furuta S. Reconstituting breast tissue with Organotypic three-dimensional co-culture of epithelial and stromal cells in Discontinuous Extracellular matrices. Bio Protoc. 2019;9:e3392.
Article PubMed PubMed Central Google Scholar
Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol. 2014;32:773–85.
Article CAS PubMed Google Scholar
Mollica PA, Booth-Creech EN, Reid JA, Zamponi M, Sullivan SM, Palmer X-L, et al. 3D bioprinted mammary organoids and tumoroids in human mammary derived ECM hydrogels. Acta Biomater. 2019;95:201–13.
Article CAS PubMed PubMed Central Google Scholar
Reid JA, Palmer X-L, Mollica PA, Northam N, Sachs PC, Bruno RD. A 3D bioprinter platform for mechanistic analysis of tumoroids and chimeric mammary organoids. Sci Rep. 2019;9:7466.
Article ADS PubMed PubMed Central Google Scholar
Reid JA, Mollica PA, Bruno RD, Sachs PC. Consistent and reproducible cultures of large-scale 3D mammary epithelial structures using an accessible bioprinting platform. Breast Cancer Res. 2018;20:122.
Article PubMed PubMed Central Google Scholar
Frittoli E, Palamidessi A, Marighetti P, Confalonieri S, Bianchi F, Malinverno C, et al. A RAB5/RAB4 recycling circuitry induces a proteolytic invasive program and promotes tumor dissemination. J Cell Biol. 2014;206:307–28.
Article CAS PubMed PubMed Central Google Scholar
Dawson PJ, Wolman SR, Tait L, Heppner GH, Miller FR. MCF10AT: a model for the evolution of cancer from proliferative breast disease. Am J Pathol. 1996;148:313–9.
CAS PubMed PubMed Central Google Scholar
Jacquemet G, Paatero I, Carisey AF, Padzik A, Orange JS, Hamidi H, et al. FiloQuant reveals increased filopodia density during breast cancer progression. J Cell Biol. 2017;216:3387–403.
Article CAS PubMed PubMed Central Google Scholar
Miller FR, Santner SJ, Tait L, Dawson PJ. MCF10DCIS.com xenograft model of human Comedo Ductal Carcinoma in situ. JNCI: J Natl Cancer Inst. 2000;92:1185a–186.
Hutter JL, Bechhoefer J. Calibration of atomic-force microscope tips. Rev Sci Instrum. 1993;64:1868–73.
Article ADS CAS Google Scholar
Hertz H. On the contact of elastic solids. J Reine Angew Math 1881;92:156–71.
Koskinen LM. G-code for bioprinting. Mendeley Data. 2024.
LeBleu VS, Macdonald B, Kalluri R. Structure and function of basement membranes. Exp Biol Med (Maywood). 2007;232:1121–9.
Article CAS PubMed Google Scholar
Wetzels RH, Holland R, van Haelst UJ, Lane EB, Leigh IM, Ramaekers FC. Detection of basement membrane components and basal cell keratin 14 in noninvasive and invasive carcinomas of the breast. Am J Pathol. 1989;134:571–9.
CAS PubMed PubMed Central Google Scholar
Goddard ET, Hill RC, Barrett A, Betts C, Guo Q, Maller O, et al. Quantitative extracellular matrix proteomics to study mammary and liver tissue microenvironments. Int J Biochem Cell Biol. 2016;81:223–32.
Article CAS PubMed PubMed Central Google Scholar
Schedin P, Keely PJ. Mammary gland ECM remodeling, stiffness, and mechanosignaling in normal development and tumor progression. Cold Spring Harb Perspect Biol. 2011;3:a003228.
Article PubMed PubMed Central Google Scholar
Peurla M, Paavolainen O, Tammelin E, Sulander S-R, Mourao L, Boström P et al. Morphometric analysis of the terminal ductal lobular unit architecture in human breast. bioRxiv 2023. https://doi.org/10.1101/2023.03.12.532249.
Mroue R, Bissell MJ. Three-dimensional cultures of mouse mammary epithelial cells. Methods Mol Biol. 2013;945:221–50.
Article PubMed PubMed Central Google Scholar
Debnath J, Muthuswamy SK, Brugge JS. Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures. Methods. 2003;30:256–68.
Article CAS PubMed Google Scholar
Debnath J, Mills KR, Collins NL, Reginato MJ, Muthuswamy SK, Brugge JS. The role of apoptosis in creating and maintaining luminal space within normal and oncogene-expressing mammary acini. Cell. 2002;111:29–40.
Article CAS PubMed Google Scholar
Krause S, Maffini MV, Soto AM, Sonnenschein C. A novel 3D in vitro culture model to study stromal-epithelial interactions in the mammary gland. Tissue Eng Part C Methods. 2008;14:261–71.
Article CAS PubMed Google Scholar
Qu Y, Han B, Yu Y, Y
Comments (0)