Computational analysis of missense variant CYP4F2*3 (V433M) in association with human CYP4F2 dysfunction: a functional and structural impact

Fenta TG, Assefa T, Alemayehu B. Quality of anticoagulation management with warfarin among outpatients in a tertiary hospital in Addis Ababa, Ethiopia: a retrospective cross-sectional study. BMC Health Serv Res. 2017;17:1–7.

Article  Google Scholar 

Li B, Liu R, Wang C, Ren C, Zhang S, Zhang F, et al. Impact of genetic and clinical factors on warfarin therapy in patients early after heart valve replacement surgery. Eur J Clin Pharmacol. 2019;75:1685–93.

Article  CAS  PubMed  Google Scholar 

Hirsh J, Dalen JE, Anderson DR, Poller L, Bussey H, Ansell J, et al. Oral anticoagulants: mechanism of action, clinical effectiveness, and optimal therapeutic range. Chest. 2001;119:8S–21S.

Article  CAS  PubMed  Google Scholar 

Takahashi H, Echizen H. Pharmacogenetics of warfarin elimination and its clinical implications. Clin Pharmacokinet. 2001;40:587–603.

Article  CAS  PubMed  Google Scholar 

D’Andrea G, D’Ambrosio RL, Di Perna P, Chetta M, Santacroce R, Brancaccio V, et al. A polymorphism in the VKORC1 gene is associated with an interindividual variability in the dose-anticoagulant effect of warfarin. Blood. 2005;105:645–9.

Article  PubMed  Google Scholar 

Rieder MJ, Reiner AP, Gage BF, Nickerson DA, Eby CS, McLeod HL, et al. Effect of VKORC1 haplotypes on transcriptional regulation and warfarin dose. N Engl J Med. 2005;352:2285–93.

Article  CAS  PubMed  Google Scholar 

Joffe HV, Xu R, Johnson FB, Longtine J, Kucher N, Goldhaber SZ. Warfarin dosing and cytochrome P450 2C9 polymorphisms. Thromb Haemost. 2004;91:1123–8.

Article  CAS  PubMed  Google Scholar 

Liang R, Wang C, Zhao H, Huang J, Hu D, Sun Y. Influence of CYP4F2 genotype on warfarin dose requirement–a systematic review and meta-analysis. Thromb Res. 2012;130:38–44.

Article  CAS  PubMed  Google Scholar 

Singh O, Sandanaraj E, Subramanian K, Lee LH, Chowbay B. Influence of CYP4F2 rs2108622 (V433M) on warfarin dose requirement in asian patients. Drug Metab Pharmacokinet. 2011;26:130–6.

Article  CAS  PubMed  Google Scholar 

Borgiani P, Ciccacci C, Forte V, Sirianni E, Novelli L, Bramanti P, et al. CYP4F2 genetic variant (rs2108622) significantly contributes to warfarin dosing variability in the italian population. Pharmacogenomics. 2009;10:261–6.

Article  CAS  PubMed  Google Scholar 

Kikuta Y, Kusunose E, Kusunose M. Characterization of Human Liver Leukotriene B4 ω-Hydroxylase P 450 (CYP 4 F2). J Biochem. 2000;127:1047–52.

Article  CAS  PubMed  Google Scholar 

Hirani V, Yarovoy A, Kozeska A, Magnusson RP, Lasker JM. Expression of CYP4F2 in human liver and kidney: assessment using targeted peptide antibodies. Arch Biochem Biophys. 2008;478:59–68.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sontag TJ, Parker RS. Cytochrome P450 ω-hydroxylase pathway of tocopherol catabolism: novel mechanism of regulation of vitamin E status. J Biol Chem. 2002;277:25290–6.

Article  CAS  PubMed  Google Scholar 

McDonald MG, Rieder MJ, Nakano M, Hsia CK, Rettie AE. CYP4F2 is a vitamin K1 oxidase: an explanation for altered warfarin dose in carriers of the V433M variant. Mol Pharmacol. 2009;75:1337–46.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Edson KZ, Prasad B, Unadkat JD, Suhara Y, Okano T, Guengerich FP, et al. Cytochrome P450-dependent catabolism of vitamin K: ω-hydroxylation catalyzed by human CYP4F2 and CYP4F11. Biochemistry. 2013;52:8276–85.

Article  CAS  PubMed  Google Scholar 

Zhang X, Hardwick JP. Regulation of CYP4F2 leukotriene B4 ω-hydroxylase by retinoic acids in HepG2 cells. Biochem Biophys Res Commun. 2000;279:864–71.

Article  CAS  PubMed  Google Scholar 

Wang MZ, Wu JQ, Bridges AS, Zeldin DC, Kornbluth S, Tidwell RR, et al. Human enteric microsomal CYP4F enzymes O-demethylate the antiparasitic prodrug pafuramidine. Drug Metab Dispos. 2007;35:2067–75.

Article  CAS  PubMed  Google Scholar 

Wang Y, Li Y, Lu J, Qi H, Cheng I, Zhang H. Involvement of CYP4F2 in the metabolism of a novel monophosphate Ester Prodrug of gemcitabine and its interaction potential in vitro. Molecules. 2018;23:1195.

Article  PubMed  PubMed Central  Google Scholar 

Johnson AL, Edson KZ, Totah RA, Rettie AE. Cytochrome P450 ω-hydroxylases in inflammation and cancer. Adv Pharmacol. 2015;74:223–62.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Alvarellos ML, Sangkuhl K, Daneshjou R, Whirl-Carrillo M, Altman RB, Klein TE. PharmGKB summary: very important pharmacogene information for CYP4F2. Pharmacogenet Genomics. 2015;25:41.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Stec DE, Roman RJ, Flasch A, Rieder MJ. Functional polymorphism in human CYP4F2 decreases 20-HETE production. Physiol Genomics. 2007.

Zhang JE, Klein K, Jorgensen AL, Francis B, Alfirevic A, Bourgeois S, et al. Effect of genetic variability in the CYP4F2, CYP4F11, and CYP4F12 genes on liver mRNA levels and warfarin response. Front Pharmacol. 2017;8:323.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang M, Huang C, Wang Z, Lv H, Li X. In silico analysis of non-synonymous single nucleotide polymorphisms (nsSNPs) in the human GJA3 gene associated with congenital cataract. BMC Mol cell Biol. 2020;21:1–13.

Article  Google Scholar 

Robin S, Hassine K, Ben, Muthukumaran J, Jurkovic Mlakar S, Krajinovic M, Nava T, et al. A potential implication of UDP-glucuronosyltransferase 2B10 in the detoxification of drugs used in pediatric hematopoietic stem cell transplantation setting: an in silico investigation. BMC Mol cell Biol. 2022;23:1–29.

Google Scholar 

Nelson-Sathi S, Umasankar PK, Sreekumar E, Nair RR, Joseph I, Nori SRC, et al. Mutational landscape and in silico structure models of SARS-CoV-2 spike receptor binding domain reveal key molecular determinants for virus-host interaction. BMC Mol Cell Biol. 2022;23:1–12.

Article  Google Scholar 

Mirzadeh A, Kobakhidze G, Vuillemot R, Jonic S, Rouiller I. In silico prediction, Characterization, Docking studies and Molecular dynamics simulation of human p97 in complex with p37 cofactor. 2022.

Surendran A, Forbes Dewey C, Low BC, Tucker-Kellogg L. A computational model of mutual antagonism in the mechano-signaling network of RhoA and nitric oxide. BMC Mol cell Biol. 2021;22:1–12.

Article  Google Scholar 

UniProt. The universal protein knowledgebase in 2021. Nucleic Acids Res. 2021;49:D480–9.

Article  Google Scholar 

Barbarino JM, Whirl-Carrillo M, Altman RB, Klein TE. PharmGKB: a worldwide resource for pharmacogenomic information. Wiley Interdiscip Rev Syst Biol Med. 2018;10:e1417.

Article  PubMed  PubMed Central  Google Scholar 

Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y. The I-TASSER suite: protein structure and function prediction. Nat Methods. 2015;12:7–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Laskowski RA, MacArthur MW, Thornton JM. PROCHECK: validation of protein-structure coordinates. 2006.

Colovos C, Yeates TO. Verification of protein structures: patterns of nonbonded atomic interactions. Protein Sci. 1993;2:1511–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lüthy R, Bowie JU, Eisenberg D. Assessment of protein models with three-dimensional profiles. Nature. 1992;356:83–5.

Article  PubMed  Google Scholar 

Wiederstein M, Sippl MJ. ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res. 2007;35 suppl2:W407–10.

Article  Google Scholar 

Capriotti E, Fariselli P, Casadio R, I-Mu[1] E, Capriotti P, Fariselli R, Casadio. I-Mutant2. 0: predicting stability changes upon mutation from the protein sequence or structure, Nucleic Acids Res. 33 (2005) W306–W310.tant2. 0: predicting stability changes upon mutation from the protein s. Nucleic Acids Res. 2005;33 suppl_2:W306–10.

Cheng J, Randall A, Baldi P. Prediction of protein stability changes for single-site mutations using support vector machines. Proteins Struct Funct Bioinforma. 2006;62:1125–32.

Article  CAS  Google Scholar 

Pires DEV, Ascher DB, Blundell TL. DUET: a server for predicting effects of mutations on protein stability using an integrated computational approach. Nucleic Acids Res. 2014;42:W314–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fraczkiewicz R, Braun W. Exact and efficient analytical calculation of the accessible surface areas and their gradients for macromolecules. J Comput Chem. 1998;19:319–33.

Article  CAS  Google Scholar 

Venselaar H, Te Beek TAH, Kuipers RKP, Hekkelman ML, Vriend G. Protein structure analysis of mutations causing inheritable diseases. An e-Science approach with life scientist friendly interfaces. BMC Bioinformatics. 2010;11:1–10.

Article  Google Scholar 

Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, et al. UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem. 2004;25:1605–12.

Article  CAS  PubMed  Google Scholar 

Yariv B, Yariv E, Kessel A, Masrati G, Chorin A, Ben, Martz E et al. Using evolutionary data to make sense of macromolecules with a ‘face-lifted’ConSurf. Protein Sci. 2023;:e4582.

Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, et al. A method and server for predicting damaging missense mutations. Nat Methods. 2010;7:248–9.

Article 

留言 (0)

沒有登入
gif