The Serotonergic System and Bone Metabolism During Pregnancy and Lactation and the Implications of SSRI Use on the Maternal-Offspring Dyad

Lefèvre CM, Sharp JA, Nicholas KR. Evolution of Lactation: ancient origin and Extreme Adaptations of the Lactation System. Annu Rev Genomics Hum Genet. 2010;11(1):219–38. https://doi.org/10.1146/annurev-genom-082509-141806.

Article  CAS  PubMed  Google Scholar 

Oftedal OT. The Mammary Gland and Its Origin During Synapsid Evolution. J Mammary Gland Biol Neoplasia. Published online 2003:28.

Griffiths M. The Biology of the Monotremes. Elsevier; 2012.

Nicholas KR, Wilde CJ, Bird PH, Hendry KAK, Tregenza K, Warner B. Asynchronous concurrent secretion of milk proteins in the Tammar Wallaby (Macropus Eugenii). In: Wilde CJ, Peaker M, Knight CH, editors. Intercellular signalling in the mammary gland. Springer US; 1995. pp. 153–70. https://doi.org/10.1007/978-1-4615-1973-7_31.

Lockyer C, FAO R, Mammals FI, Norway A. B, Aug. Growth and energy budgets of large baleen whales from the southern hemisphere. XF2006134403 FAO Fish Ser. 1981;5:379–487.

Oftedal OT. Lactation in whales and dolphins: evidence of divergence between baleen- and toothed-species. J Mammary Gland Biol Neoplasia. 1997;2(3):205–30. https://doi.org/10.1023/a:1026328203526.

Article  CAS  PubMed  Google Scholar 

Nayak CM, Ramachandra CT, Kumar GM. A comprehensive review on composition of donkey milk in comparison to human, cow, buffalo, sheep, goat, camel and horse milk. Mysore J Agric Sci. 2020;54(3):42–50.

Google Scholar 

Goldman AS. Evolution of the mammary gland defense system and the ontogeny of the immune system. J Mammary Gland Biol Neoplasia. 2002;7(3):277–89. https://doi.org/10.1023/a:1022852700266.

Article  PubMed  Google Scholar 

Fergusson W. Breast feeding and later psychosocial adjustment. Paediatr Perinat Epidemiol. 1999;13(2):144–57. https://doi.org/10.1046/j.1365-3016.1999.00167.x.

Article  CAS  PubMed  Google Scholar 

Infant and young child feeding. World Health Organization, Published. June 9, 2021. Accessed December 17, 2021. https://www.who.int/news-room/fact-sheets/detail/infant-and-young-child-feeding

Major Depression. National Institute of Mental Health (NIMH). Accessed January 7., 2022. https://www.nimh.nih.gov/health/statistics/major-depression

Burt VK, Stein K. Epidemiology of depression throughout the female life cycle. J Clin Psychiatry. 2002;63(Suppl 7):9–15.

PubMed  Google Scholar 

Kroska EB, Stowe ZN. Postpartum Depression. Obstet Gynecol Clin North Am. 2020;47(3):409–19. https://doi.org/10.1016/j.ogc.2020.05.001.

Article  PubMed  Google Scholar 

Cooper WO, Willy ME, Pont SJ, Ray WA. Increasing use of antidepressants in pregnancy. Am J Obstet Gynecol. 2007;196(6):544.e1-544.e5. doi:https://doi.org/10.1016/j.ajog.2007.01.033

Tsapakis EM, Gamie Z, Tran GT, et al. The adverse skeletal effects of selective serotonin reuptake inhibitors. Eur Psychiatry. 2012;27(3):156–69. https://doi.org/10.1016/j.eurpsy.2010.10.006.

Article  CAS  PubMed  Google Scholar 

Weaver SR, Fricke HP, Xie C, et al. Peripartum Fluoxetine reduces maternal trabecular bone after weaning and elevates mammary gland serotonin and PTHrP. Endocrinology. 2018;159(8):2850–62. https://doi.org/10.1210/en.2018-00279.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Weaver SR, Xie C, Charles JF, Hernandez LL. In utero and lactational exposure to the selective serotonin reuptake inhibitor fluoxetine compromises pup bones at weaning. Sci Rep. 2019;9(1):238. https://doi.org/10.1038/s41598-018-36497-8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rapport MM, Green AA, Page IH, Crystalline Serotonin. Science. 1948;108(2804):329–30. https://doi.org/10.1126/science.108.2804.329.

Article  CAS  PubMed  Google Scholar 

Erspamer V, Asero B. Identification of enteramine, the specific hormone of the enterochromaffin cell system, as 5-hydroxytryptamine. Nature. 1952;169(4306):800–1. https://doi.org/10.1038/169800b0.

Article  CAS  PubMed  Google Scholar 

Mawe GM, Hoffman JM. Serotonin signalling in the gut—functions, dysfunctions and therapeutic targets. Nat Rev Gastroenterol Hepatol. 2013;10(8):473–86. https://doi.org/10.1038/nrgastro.2013.105.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Azmitia EC. Serotonin neurons, neuroplasticity, and homeostasis of neural tissue. Neuropsychopharmacology. 1999;21(1):33–45. https://doi.org/10.1016/S0893-133X(99)00022-6.

Article  Google Scholar 

Lucki I. The spectrum of behaviors influenced by serotonin. Biol Psychiatry. 1998;44(3):151–62. https://doi.org/10.1016/S0006-3223(98)00139-5.

Article  CAS  PubMed  Google Scholar 

Bertrand PP. Real-time measurement of serotonin release and motility in guinea pig ileum. J Physiol. 2006;577(2):689–704. https://doi.org/10.1113/jphysiol.2006.117804.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yadav VK, Ryu JH, Suda N, et al. Lrp5 controls bone formation by inhibiting serotonin synthesis in the duodenum: an entero-bone endocrine axis. Cell. 2008;135(5):825–37. https://doi.org/10.1016/j.cell.2008.09.059.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Margolis KG, Stevanovic K, Li Z, et al. Pharmacological reduction of mucosal but not neuronal serotonin opposes inflammation in mouse intestine. Gut. 2014;63(6):928–37. https://doi.org/10.1136/gutjnl-2013-304901.

Article  CAS  PubMed  Google Scholar 

Matsuda M, Imaoka T, Vomachka AJ, et al. Serotonin regulates mammary Gland Development via an Autocrine-Paracrine Loop. Dev Cell. 2004;6(2):193–203. https://doi.org/10.1016/S1534-5807(04)00022-X.

Article  CAS  PubMed  Google Scholar 

Oldendorf W. Brain uptake of radiolabeled amino acids, amines, and hexoses after arterial injection. Am J Physiol-Leg Content. 1971;221(6):1629–39. https://doi.org/10.1152/ajplegacy.1971.221.6.1629.

Article  CAS  Google Scholar 

Rahman MK, Nagatsu T, Sakurai T, Hori S, Abe M, Matsuda M. Effect of pyridoxal phosphate Deficiency on aromatic L-Amino acid decarboxylase activity with L-Dopa and L-5-Hydroxytryptophan as substrates in rats. Jpn J Pharmacol. 1982;32(5):803–11. https://doi.org/10.1254/jjp.32.803.

Article  CAS  PubMed  Google Scholar 

Grahame-Smith DG. Tryptophan hydroxylation in brain. Biochem Biophys Res Commun. 1964;16(6):586–92. https://doi.org/10.1016/0006-291X(64)90197-4.

Article  CAS  PubMed  Google Scholar 

Walther DJ, Peter JU, Bashammakh S, et al. Synthesis of serotonin by a second tryptophan hydroxylase isoform. Science. 2003;299(5603):76–6. https://doi.org/10.1126/science.1078197.

Article  CAS  PubMed  Google Scholar 

Yamaguchi Y, Hayashi C. Simple determination of high urinary excretion of 5-hydroxyindole-3-acetic acid with ferric chloride. Clin Chem. 1978;24(1):149–50. https://doi.org/10.1093/clinchem/24.1.149.

Article  CAS  PubMed  Google Scholar 

Klein DC, Weller JL. Indole Metabolism in the pineal gland: a circadian rhythm in N-Acetyltransferase. Science. 1970;169(3950):1093–5. https://doi.org/10.1126/science.169.3950.1093.

Article  CAS  PubMed  Google Scholar 

Illnerova H, Backström M, Sääf J, Wetterberg L, Vangbo B. Melatonin in rat pineal gland and serum; rapid parallel decline after light exposure at night. Neurosci Lett. 1978;9(2):189–93. https://doi.org/10.1016/0304-3940(78)90070-8.

Article  CAS  PubMed  Google Scholar 

Quay WB. Circadian rhythm in rat pineal serotonin and its modifications by estrous cycle and photoperiod. Gen Comp Endocrinol. 1963;3(5):473–9. https://doi.org/10.1016/0016-6480(63)90079-0.

Article  CAS  PubMed  Google Scholar 

Fernstrom JD. Role of precursor availability in control of monoamine biosynthesis in brain. Physiol Rev. 1983;63(2):484–546. https://doi.org/10.1152/physrev.1983.63.2.484.

Article  CAS  PubMed  Google Scholar 

Mondanelli G, Volpi C. The double life of serotonin metabolites: in the mood for joining neuronal and immune systems. Curr Opin Immunol. 2021;70:1–6. https://doi.org/10.1016/j.coi.2020.11.008.

Article  CAS  PubMed  Google Scholar 

Schwarcz R, Bruno JP, Muchowski PJ, Wu HQ. Kynurenines in the mammalian brain: when physiology meets pathology. Nat Rev Neurosci. 2012;13(7):465–77. https://doi.org/10.1038/nrn3257.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Braidy N, Grant R, Adams S, Brew BJ, Guillemin GJ. Mechanism for quinolinic acid cytotoxicity in human astrocytes and neurons. Neurotox Res. 2009;16(1):77–86. https://doi.org/10.1007/s12640-009-9051-z.

Article  CAS  PubMed  Google Scholar 

Oxenkrug GF. Tryptophan–kynurenine metabolism as a common mediator of genetic and environmental impacts in major depressive disorder: the Serotonin Hypothesis revisited 40 years later. Isr J Psychiatry Relat Sci. 2010;47(1):56–63.

PubMed  PubMed Central  Google Scholar 

Bell C, Abrams J, Nutt D. Tryptophan depletion and its implications for psychiatry. Br J Psychiatry. 2001;178(5):399–405. https://doi.org/10.1192/bjp.178.5.399.

Article  CAS  PubMed  Google Scholar 

Filip M, Bader M. Overview on 5-HT receptors and their role in physiology and pathology of the central nervous system. Pharmacol Rep. 2009;61(5):761–77. https://doi.org/10.1016/S1734-1140(09)70132-X.

Article  CAS  PubMed  Google Scholar 

Peroutka SJ, Howell TA. The molecular evolution of G protein-coupled receptors: focus on 5-hydroxytryptamine receptors. Neuropharmacology. 1994;33(3):319–24. https://doi.org/10.1016/0028-3908(94)90060-4.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif