Brain, Behavior and Evolution
Gebhardt I.C. · Hofmann M.H.Log in to MyKarger to check if you already have access to this content.
Buy FullText & PDF Unlimited re-access via MyKarger Unrestricted printing, no saving restrictions for personal use read more
CHF 38.00 *
EUR 35.00 *
USD 39.00 *
Buy a Karger Article Bundle (KAB) and profit from a discount!
If you would like to redeem your KAB credit, please log in.
Save over 20% compared to the individual article price. Rent via DeepDyve Unlimited fulltext viewing of this article Organize, annotate and mark up articles Printing and downloading restrictions apply Subscribe Access to all articles of the subscribed year(s) guaranteed for 5 years Unlimited re-access via Subscriber Login or MyKarger Unrestricted printing, no saving restrictions for personal use read more Select* The final prices may differ from the prices shown due to specifics of VAT rules.
Article / Publication Details AbstractBrains are very plastic both in response to phenotypic diversity and to larger evolutionary trends. Differences between taxa cannot be easily attributed to either factors. Comparative morphological data on higher taxonomic levels is scarce especially in ray-finned fishes. Here we show the great diversity of brain areas of more than 150 species of ray-finned fishes by volumetric measurements using block face imaging. We found that differences among families or orders are more likely due to environmental needs than to systematic position. Most notable changes are present in the brain areas processing sensory input (chemosenses and lateral line vs. visual system) between salt- and freshwater species due to fundamental differences in habitat properties. Further, some patterns of brain volumetry are linked to characteristics of body morphology. There is a positive correlation between cerebellum size and body depth, as well as the presence of a swim bladder. Since body morphology is linked to ecotypes and habitat selection, a complex character space of brain and body morphology and ecological factors together could explain better the differentiation of species into their ecological niches and may lead to a better understanding of how animals adapt to their environment.
S. Karger AG, Basel
Article / Publication Details Copyright / Drug Dosage / Disclaimer Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Comments (0)