Correlation of MTAP immunohistochemical deficiency with CDKN2A homozygous deletion and clinicopathological features in pleomorphic xanthoastrocytoma

Shaikh N et al (2019) Pleomorphic xanthoastrocytoma: a brief review. CNS Oncol 8(3):Cns39

Article  CAS  Google Scholar 

Kepes JJ, Rubinstein LJ, Eng LF (1979) Pleomorphic xanthoastrocytoma: a distinctive meningocerebral glioma of young subjects with relatively favorable prognosis. A study of 12 cases. Cancer 44(5):1839–1852

Article  CAS  Google Scholar 

Phillips JJ et al (2019) The genetic landscape of anaplastic pleomorphic xanthoastrocytoma. Brain Pathol 29(1):85–96

Article  CAS  Google Scholar 

Vaubel R et al (2021) Biology and grading of pleomorphic xanthoastrocytoma-what have we learned about it? Brain Pathol 31(1):20–32

Article  CAS  Google Scholar 

Ryall S, Tabori U, Hawkins C (2020) Pediatric low-grade glioma in the era of molecular diagnostics. Acta Neuropathol Commun 8(1):30

Article  Google Scholar 

Hida T et al (2017) Immunohistochemical detection of MTAP and BAP1 protein loss for mesothelioma diagnosis: comparison with 9p21 FISH and BAP1 immunohistochemistry. Lung Cancer 104:98–105

Article  Google Scholar 

Krasinskas AM et al (2010) CDKN2A and MTAP deletions in peritoneal mesotheliomas are correlated with loss of p16 protein expression and poor survival. Mod Pathol 23(4):531–538

Article  CAS  Google Scholar 

Purkait S et al (2013) CDKN2A deletion in pediatric versus adult glioblastomas and predictive value of p16 immunohistochemistry. Neuropathology 33(4):405–412

Article  CAS  Google Scholar 

Cottone L et al (2020) Frequent alterations in p16/CDKN2A identified by immunohistochemistry and FISH in chordoma. J Pathol Clin Res 6(2):113–123

Article  CAS  Google Scholar 

Illei PB et al (2003) Homozygous deletion of CDKN2A and codeletion of the methylthioadenosine phosphorylase gene in the majority of pleural mesotheliomas. Clin Cancer Res 9(6):2108–2113

CAS  Google Scholar 

Ladanyi M (2005) Implications of P16/CDKN2A deletion in pleural mesotheliomas. Lung Cancer 49(Suppl 1):S95–S98

Article  Google Scholar 

Berg KB et al (2018) Utility of methylthioadenosine phosphorylase compared with BAP1 immunohistochemistry, and CDKN2A and NF2 fluorescence in situ hybridization in separating reactive mesothelial proliferations from epithelioid malignant mesotheliomas. Arch Pathol Lab Med 142(12):1549–1553

Article  CAS  Google Scholar 

Kinoshita Y et al (2018) A combination of MTAP and BAP1 immunohistochemistry is effective for distinguishing sarcomatoid mesothelioma from fibrous pleuritis. Lung Cancer 125:198–204

Article  Google Scholar 

Chapel DB et al (2020) MTAP immunohistochemistry is an accurate and reproducible surrogate for CDKN2A fluorescence in situ hybridization in diagnosis of malignant pleural mesothelioma. Mod Pathol 33(2):245–254

Article  CAS  Google Scholar 

Barbarino M et al (2020) PRMT5 silencing selectively affects MTAP-deleted mesothelioma: in vitro evidence of a novel promising approach. J Cell Mol Med 24(10):5565–5577

Article  CAS  Google Scholar 

Satomi K et al (2021) Utility of methylthioadenosine phosphorylase immunohistochemical deficiency as a surrogate for CDKN2A homozygous deletion in the assessment of adult-type infiltrating astrocytoma. Mod Pathol 34(4):688–700

Article  CAS  Google Scholar 

Sasaki S et al (2022) Correlation of MTAP immunohistochemistry with CDKN2A status assessed by fluorescence in situ hybridization and clinicopathological features in CNS WHO grade 2 and 3 meningiomas: a single center cohort study. J Neuropathol Exp Neurol 81(2):117–126

Article  CAS  Google Scholar 

Villa C et al (2018) The 2016 World Health Organization classification of tumours of the central nervous system. Presse Med 47(11–12 Pt 2):e187–e200

Article  Google Scholar 

Louis DN et al (2021) The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro Oncol 23(8):1231–1251

Article  CAS  Google Scholar 

Cheng YY et al (2020) CDKN2A and MTAP are useful biomarkers detectable by droplet digital PCR in malignant pleural mesothelioma: a potential alternative method in diagnosis compared to fluorescence in situ hybridisation. Front Oncol 10:579327

Article  Google Scholar 

Vaubel RA et al (2018) Recurrent copy number alterations in low-grade and anaplastic pleomorphic xanthoastrocytoma with and without BRAF V600E mutation. Brain Pathol 28(2):172–182

Article  CAS  Google Scholar 

Weber RG et al (2007) Frequent loss of chromosome 9, homozygous CDKN2A/p14(ARF)/CDKN2B deletion and low TSC1 mRNA expression in pleomorphic xanthoastrocytomas. Oncogene 26(7):1088–1097

Article  CAS  Google Scholar 

Zou H et al (2019) Molecular features of pleomorphic xanthoastrocytoma. Hum Pathol 86:38–48

Article  CAS  Google Scholar 

Lassaletta A et al (2017) Therapeutic and prognostic implications of BRAF V600E in pediatric low-grade gliomas. J Clin Oncol 35(25):2934–2941

Article  CAS  Google Scholar 

Shirahata M et al (2018) Novel, improved grading system(s) for IDH-mutant astrocytic gliomas. Acta Neuropathol 136(1):153–166

Article  CAS  Google Scholar 

Dias-Santagata D et al (2011) BRAF V600E mutations are common in pleomorphic xanthoastrocytoma: diagnostic and therapeutic implications. PLoS One 6(3):e17948

Article  CAS  Google Scholar 

Schindler G et al (2011) Analysis of BRAF V600E mutation in 1,320 nervous system tumors reveals high mutation frequencies in pleomorphic xanthoastrocytoma, ganglioglioma and extra-cerebellar pilocytic astrocytoma. Acta Neuropathol 121(3):397–405

Article  CAS  Google Scholar 

Chamberlain MC (2013) Salvage therapy with BRAF inhibitors for recurrent pleomorphic xanthoastrocytoma: a retrospective case series. J Neurooncol 114(2):237–240

Article  CAS  Google Scholar 

Brown NF et al (2017) Dabrafenib and trametinib in BRAFV600E mutated glioma. CNS Oncol 6(4):291–296

Article  CAS  Google Scholar 

Ida CM et al (2015) Pleomorphic xanthoastrocytoma: natural history and long-term follow-up. Brain Pathol 25(5):575–586

Article  CAS  Google Scholar 

Kaley T et al (2018) BRAF inhibition in BRAF(V600)-mutant gliomas: results from the VE-BASKET study. J Clin Oncol 36(35):3477–3484

Article  CAS  Google Scholar 

Nakajima T et al (2006) Malignant transformation of pleomorphic xanthoastrocytoma. Acta Neurochir (Wien) 148(1):67–71 (discussion 71)

Article  CAS  Google Scholar 

Marton E et al (2007) Malignant progression in pleomorphic xanthoastrocytoma: personal experience and review of the literature. J Neurol Sci 252(2):144–153

Article  Google Scholar 

Tanaka S et al (2014) Epithelioid glioblastoma arising from pleomorphic xanthoastrocytoma with the BRAF V600E mutation. Brain Tumor Pathol 31(3):172–176

Article  Google Scholar 

Louis D, Ohkagi H, Wiestler O, Cavenee WK (2016) World Health Organization classification of tumours of the central nervous system. World Health Organization classification of tumours revised 4th edition

Louis DN, Prry A, Wesseling P, Brat DJ, Cree IA et al (2021) The 2021 WHO classification of tumors of the central nervous system. World Health Organization classification of tumours revised 5th edition

Savola S et al (2007) Microdeletions in 9p21.3 induce false negative results in CDKN2A FISH analysis of Ewing sarcoma. Cytogenet Genome Res 119(1–2):21–26

Article  CAS  Google Scholar 

Chapel DB et al (2021) Correlation of methylthioadenosine phosphorylase (MTAP) protein expression with MTAP and CDKN2A copy number in malignant pleural mesothelioma. Histopathology 78(7):1032–1042

Article  Google Scholar 

Rao LS, Miller DC, Newcomb EW (1997) Correlative immunohistochemistry and molecular genetic study of the inactivation of the p16INK4A genes in astrocytomas. Diagn Mol Pathol 6(2):115–122

Article  CAS  Google Scholar 

留言 (0)

沒有登入
gif