FISH analysis reveals CDKN2A and IFNA14 co-deletion is heterogeneous and is a prominent feature of glioblastoma

Weller M et al (2015) Glioma. Nat Rev Dis Prim 1:15017

Article  PubMed  Google Scholar 

Ostrom QT et al (2019) CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2012–2016. Neuro Oncol 21(Suppl 5):v1–v100

Article  PubMed  PubMed Central  Google Scholar 

Stupp R et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352(10):987–996

Article  PubMed  CAS  Google Scholar 

Stupp R et al (2009) Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 10(5):459–466

Article  PubMed  CAS  Google Scholar 

Hanif F et al (2017) Glioblastoma multiforme: a review of its epidemiology and pathogenesis through clinical presentation and treatment. Asian Pac J Cancer Prev 18(1):3–9

PubMed  PubMed Central  Google Scholar 

Verhaak RG et al (2010) Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17(1):98–110

Article  PubMed  PubMed Central  CAS  Google Scholar 

Brennan CW et al (2013) The somatic genomic landscape of glioblastoma. Cell 155(2):462–477

Article  PubMed  PubMed Central  CAS  Google Scholar 

Cancer Genome Atlas Research (2008) Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455(7216):1061–1068

Article  Google Scholar 

Louis DN et al (2016) The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131(6):803–820

Article  PubMed  Google Scholar 

Louis DN et al (2021) The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro Oncol 23(8):1231–1251

Article  PubMed  PubMed Central  CAS  Google Scholar 

Gonzalez-Castro LN, Wesseling P (2021) The cIMPACT-NOW updates and their significance to current neuro-oncology practice. Neurooncol Pract 8(1):4–10

PubMed  Google Scholar 

Ma S et al (2020) Prognostic impact of CDKN2A/B deletion, TERT mutation, and EGFR amplification on histological and molecular IDH-wildtype glioblastoma. Neurooncol Adv 2(1):vdaa126

PubMed  PubMed Central  Google Scholar 

Gil J, Peters G (2006) Regulation of the INK4b-ARF-INK4a tumour suppressor locus: all for one or one for all. Nat Rev Mol Cell Biol 7(9):667–677

Article  PubMed  CAS  Google Scholar 

Kim WY, Sharpless NE (2006) The regulation of INK4/ARF in cancer and aging. Cell 127(2):265–275

Article  PubMed  CAS  Google Scholar 

Lu VM et al (2020) The prognostic significance of CDKN2A homozygous deletion in IDH-mutant lower-grade glioma and glioblastoma: a systematic review of the contemporary literature. J Neurooncol 148(2):221–229

Article  PubMed  CAS  Google Scholar 

Park JW et al (2021) The prognostic significance of p16 expression pattern in diffuse gliomas. J Pathol Transl Med 55(2):102–111

Article  PubMed  Google Scholar 

Appay R et al (2019) CDKN2A homozygous deletion is a strong adverse prognosis factor in diffuse malignant IDH-mutant gliomas. Neuro Oncol 21(12):1519–1528

PubMed  PubMed Central  CAS  Google Scholar 

Reis GF et al (2015) CDKN2A loss is associated with shortened overall survival in lower-grade (World Health Organization Grades II-III) astrocytomas. J Neuropathol Exp Neurol 74(5):442–452

Article  PubMed  CAS  Google Scholar 

Romagosa C et al (2011) p16(Ink4a) overexpression in cancer: a tumor suppressor gene associated with senescence and high-grade tumors. Oncogene 30(18):2087–2097

Article  PubMed  CAS  Google Scholar 

Milde-Langosch K et al (2001) Overexpression of the p16 cell cycle inhibitor in breast cancer is associated with a more malignant phenotype. Breast Cancer Res Treat 67(1):61–70

Article  PubMed  CAS  Google Scholar 

Lee CT et al (1999) Overexpression of the cyclin-dependent kinase inhibitor p16 is associated with tumor recurrence in human prostate cancer. Clin Cancer Res 5(5):977–983

PubMed  CAS  Google Scholar 

Gutiontov SI et al (2021) CDKN2A loss-of-function predicts immunotherapy resistance in non-small cell lung cancer. Sci Rep 11(1):20059

Article  PubMed  PubMed Central  CAS  Google Scholar 

Parkin J, Cohen B (2001) An overview of the immune system. Lancet 357(9270):1777–1789

Article  PubMed  CAS  Google Scholar 

de Padilla CML, Niewold TB (2016) The type I interferons: basic concepts and clinical relevance in immune-mediated inflammatory diseases. Gene 576(1):14–21

Article  Google Scholar 

Ferrantini M, Capone I, Belardelli F (2007) Interferon-alpha and cancer: mechanisms of action and new perspectives of clinical use. Biochimie 89(6–7):884–893

Article  PubMed  CAS  Google Scholar 

Vidal P (2020) Interferon α in cancer immunoediting: from elimination to escape. Scand J Immunol 91(5):e12863

Article  PubMed  Google Scholar 

Tarhini AA, Gogas H, Kirkwood JM (2012) IFN-α in the treatment of melanoma. J Immunol 189(8):3789–3793

Article  PubMed  CAS  Google Scholar 

Kankuri-Tammilehto M et al (2023) Long-term outcome with prolonged use of interferon-alpha administered intermittently for metastatic renal cell carcinoma: a phase II study. Anticancer Res 43(6):2645–2657

Article  PubMed  CAS  Google Scholar 

Guo J et al (2019) Empowering therapeutic antibodies with IFN-α for cancer immunotherapy. PLoS ONE 14(8):e0219829

Article  PubMed  PubMed Central  CAS  Google Scholar 

Guo C et al (2023) Adjuvant temozolomide chemotherapy with or without interferon Alfa among patients with newly diagnosed high-grade gliomas: a randomized clinical trial. JAMA Netw Open 6(1):e2253285

Article  PubMed  Google Scholar 

Fujita M et al (2010) Role of type 1 IFNs in antiglioma immunosurveillance–using mouse studies to guide examination of novel prognostic markers in humans. Clin Cancer Res 16(13):3409–3419

Article  PubMed  PubMed Central  CAS  Google Scholar 

Yu R, Zhu B, Chen D (2022) Type I interferon-mediated tumor immunity and its role in immunotherapy. Cell Mol Life Sci 79(3):191

Article  PubMed  PubMed Central  CAS  Google Scholar 

Rafique I, Kirkwood JM, Tarhini AA (2015) Immune checkpoint blockade and interferon-α in melanoma. Semin Oncol 42(3):436–447

Article  PubMed  PubMed Central  CAS  Google Scholar 

Aricò E et al (2019) Type I interferons and cancer: an evolving story demanding novel clinical applications. Cancers (Basel) 11(12):1943

Article  PubMed  Google Scholar 

Tarhini AA et al (2012) Differing patterns of circulating regulatory T cells and myeloid-derived suppressor cells in metastatic melanoma patients receiving anti-CTLA4 antibody and interferon-α or TLR-9 agonist and GM-CSF with peptide vaccination. J Immunother 35(9):702–710

Article  PubMed  PubMed Central  CAS  Google Scholar 

Al Shboul S et al (2021) Kinomics platform using GBM tissue identifies BTK as being associated with higher patient survival. Life Sci Alliance 4(12):e202101054

Article  PubMed  PubMed Central  CAS  Google Scholar 

Kononen J et al (1998) Tissue microarrays for high-throughput molecular profiling of tumor specimens. Nat Med 4(7):844–847

Article  PubMed  CAS  Google Scholar 

Purkait S et al (2013) CDKN2A deletion in pediatric versus adult glioblastomas and predictive value of p16 immunohistochemistry. Neuropathology 33(4):405–412

Article  PubMed  CAS  Google Scholar 

Jubb A, Boyle S (2020) Visualizing genome reorganization using 3D DNA FISH. Methods Mol Biol 2148:85–95

Article  PubMed  CAS 

Comments (0)

No login
gif