Cry1Ac Protoxin Confers Antitumor Adjuvant Effect in a Triple-Negative Breast Cancer Mouse Model by Improving Tumor Immunity

1. Kondov, B, Milenkovikj, Z, Kondov, G, et al. Presentation of the molecular subtypes of breast cancer detected by immunohistochemistry in surgically treated patients. Open Access Macedonian J Med Sci. 2018;6:961-967. doi:10.3889/oamjms.2018.231.
Google Scholar | Crossref | Medline2. Vidula, N, Bardia, A. Targeted therapy for metastatic triple negative breast cancer: the next frontier in precision oncology. Oncotarget. 2017;8:106167-106168. doi:10.18632/oncotarget.22580.
Google Scholar | Crossref | Medline3. Melero, I, Gaudernack, G, Gerritsen, W, et al. Therapeutic vaccines for cancer: an overview of clinical trials. Nat Rev Clin Oncol. 2014;11:509-524. doi:10.1038/nrclinonc.2014.111.
Google Scholar | Crossref | Medline | ISI4. Banday, AH, Jeelani, S, Hruby, VJ. Cancer vaccine adjuvants—recent clinical progress and future perspectives. Immunopharmacol Immunotoxicol. 2015;37:1-11. doi:10.3109/08923973.2014.971963.
Google Scholar | Crossref | Medline5. Jie, J, Zhang, Y, Zhou, H, et al. CpG ODN1826 as a promising Mucin1-maltose-binding protein vaccine adjuvant induced DC maturation and enhanced antitumor immunity. Int J Mol Sci. 2018;19:920. doi:10.3390/ijms19030920.
Google Scholar | Crossref6. Zhu, S, Lv, X, Zhang, X, et al. An effective dendritic cell-based vaccine containing glioma stem-like cell lysate and CpG adjuvant for an orthotopic mouse model of glioma. Int J Cancer. 2019;144:2867-2879. doi:10.1002/ijc.32008.
Google Scholar | Crossref | Medline7. Srivastava, AK, Yolcu, ES, Dinc, G, Sharma, RK, Shirwan, H. SA-4-1BBL/MPL as a novel immune adjuvant platform to combat cancer. Oncoimmunology. 2016;5:e1064580. doi:10.1080/2162402X.2015.1064580.
Google Scholar | Crossref8. Yue, W, Chen, L, Yu, L, et al. Checkpoint blockade and nanosonosensitizer-augmented noninvasive sonodynamic therapy combination reduces tumour growth and metastases in mice. Nat Commun. 2019;10:2025. doi:10.1038/s41467-019-09760-3.
Google Scholar | Crossref | Medline9. Cho, JH, Lee, HJ, Ko, HJ, et al. The TLR7 agonist imiquimod induces anti-cancer effects via autophagic cell death and enhances anti-tumoral and systemic immunity during radiotherapy for melanoma. Oncotarget. 2017;8:24932-24948. doi:10.18632/oncotarget.15326.
Google Scholar | Crossref | Medline10. Doorduijn, EM, Sluijter, M, Salvatori, DC, et al. CD4(+) T cell and NK cell interplay key to regression of MHC class I(low) tumors upon TLR7/8 agonist therapy. Cancer Immunol Res. 2017;5:642-653. doi:10.1158/2326-6066.CIR-16-0334.
Google Scholar | Crossref | Medline11. Di, S, Zhou, M, Pan, Z, et al. Combined adjuvant of poly I:C improves antitumor effects of CAR-T cells. Front Oncol. 2019;9:241. doi:10.3389/fonc.2019.00241.
Google Scholar | Crossref | Medline12. Glaffig, M, Stergiou, N, Schmitt, E, Kunz, H. Immunogenicity of a fully synthetic MUC1 glycopeptide antitumor vaccine enhanced by poly(I:C) as a TLR3-activating adjuvant. ChemMedChem. 2017;12:722-727. doi:10.1002/cmdc.201700254.
Google Scholar | Crossref | Medline13. Peyret, V, Nazar, M, Martin, M, et al. Functional toll-like receptor 4 overexpression in papillary thyroid cancer by MAPK/ERK-induced ETS1 transcriptional activity. Mol Cancer Res. 2018;16:833-845. doi:10.1158/1541-7786.MCR.
Google Scholar | Crossref | Medline14. Bugge, M, Bergstrom, B, Eide, OK, et al. Surface toll-like receptor 3 expression in metastatic intestinal epithelial cells induces inflammatory cytokine production and promotes invasiveness. J Biol Chem. 2017;292:15408-15425. doi:10.1074/jbc.M117.784090.
Google Scholar | Crossref | Medline15. Pradere, JP, Dapito, DH, Schwabe, RF. The Yin and Yang of toll-like receptors in cancer. Oncogene. 2014;33:3485-3495. doi:10.1038/onc.2013.302.
Google Scholar | Crossref | Medline16. Qin, L, Wu, X, Block, ML, et al. Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration. Glia. 2007;55:453-462. doi:10.1002/glia.20467.
Google Scholar | Crossref | Medline | ISI17. Furi, I, Sipos, F, Germann, TM, et al. Epithelial toll-like receptor 9 signaling in colorectal inflammation and cancer: clinico-pathogenic aspects. World J Gastroenterol. 2013;19:4119-4126. doi:10.3748/wjg.v19.i26.4119.
Google Scholar | Crossref | Medline18. Gomez, I, Sanchez, J, Munoz-Garay, C, et al. Bacillus thuringiensis Cry1A toxins are versatile proteins with multiple modes of action: two distinct pre-pores are involved in toxicity. Biochem J. 2014;459:383-396. doi:10.1042/BJ20131408.
Google Scholar | Crossref | Medline19. Vazquez, RI, Moreno-Fierros, L, Neri-Bazan, L, De La Riva, GA, Lopez-Revilla, R. Bacillus thuringiensis Cry1Ac protoxin is a potent systemic and mucosal adjuvant. Scand J Immunol. 1999;49:578-584. doi:10.1046/j.1365-3083.1999.00534.x.
Google Scholar | Crossref | Medline20. Moreno-Fierros, L, Ruiz-Medina, EJ, Esquivel, R, Lopez-Revilla, R, Pina-Cruz, S. Intranasal Cry1Ac protoxin is an effective mucosal and systemic carrier and adjuvant of Streptococcus pneumoniae polysaccharides in mice. Scand J Immunol. 2003;57:45-55. doi:10.1046/j.1365-3083.2003.01190.x.
Google Scholar | Crossref | Medline21. Moreno-Fierros, L, Garcia, N, Gutierrez, R, Lopez-Revilla, R, Vazquez-Padron, RI. Intranasal, rectal and intraperitoneal immunization with protoxin Cry1Ac from Bacillus thuringiensis induces compartmentalized serum, intestinal, vaginal and pulmonary immune responses in Balb/c mice. Microbes Infect. 2000;2:885-890. doi:10.1016/s1286-4579(00)00398.
Google Scholar | Crossref | Medline22. Rubio-Infante, N, Ilhuicatzi-Alvarado, D, Torres-Martinez, M, et al. The macrophage activation induced by Bacillus thuringiensis Cry1Ac protoxin involves ERK1/2 and p38 pathways and the interaction with cell-surface-HSP70. J Cell Biochem. 2018;119:580-598. doi:10.1002/jcb.26216.
Google Scholar | Crossref | Medline23. Moreno-Fierros, L, Garcia-Hernandez, AL, Ilhuicatzi-Alvarado, D, et al. Cry1Ac protoxin from Bacillus thuringiensis promotes macrophage activation by upregulating CD80 and CD86 and by inducing IL-6, MCP-1 and TNF-alpha cytokines. Int Immunopharmacol. 2013;17:1051-1066. doi:10.1016/j.intimp.2013.10.005.
Google Scholar | Crossref | Medline24. Legorreta-Herrera, M, Meza, RO, Moreno-Fierros, L. Pretreatment with Cry1Ac protoxin modulates the immune response, and increases the survival of Plasmodium-infected CBA/Ca mice. J Biomed Biotechnol. 2010;2010:198921. doi:10.1155/2010/198921.
Google Scholar | Crossref | Medline25. Rojas-Hernandez, S, Rodriguez-Monroy, MA, Lopez-Revilla, R, Resendiz-Albor, AA, Moreno-Fierros, L. Intranasal coadministration of the Cry1Ac protoxin with amoebal lysates increases protection against Naegleria fowleri meningoencephalitis. Infect Immun. 2004;72:4368-4375. doi:10.1128/IAI.72.8.4368-4375.2004.
Google Scholar | Crossref | Medline26. Ibarra-Moreno, S, Garcia-Hernandez, AL, Moreno-Fierros, L. Coadministration of protoxin Cry1Ac from Bacillus thuringiensis with metacestode extract confers protective immunity to murine cysticercosis. Parasite Immunol. 2014;36:266-270. doi:10.1111/pim.12103.
Google Scholar | Crossref27. Gonzalez-Gonzalez, E, Garcia-Hernandez, AL, Flores-Mejia, R, Lopez-Santiago, R, Moreno-Fierros, L. The protoxin Cry1Ac of Bacillus thuringiensis improves the protection conferred by intranasal immunization with Brucella abortus RB51 in a mouse model. Veter Microbiol. 2015;175:382-388. doi:10.1016/j.vetmic.2014.11.021.
Google Scholar | Crossref | Medline28. Guerrero, GG, Dean, DH, Moreno-Fierros, L. Structural implication of the induced immune response by Bacillus thuringiensis Cry proteins: role of the N-terminal region. Mol Immunol. 2004;41:1177-1183. doi:10.1016/j.molimm.2004.06.026.
Google Scholar | Crossref | Medline29. Torres-Martinez, M, Rubio-Infante, N, Garcia-Hernandez, AL, Nava-Acosta, R, Ilhuicatzi-Alvarado, D, Moreno-Fierros, L. Cry1Ac toxin induces macrophage activation via ERK1/2, JNK and p38 mitogen-activated protein kinases. Int J Biochem Cell Biol. 2016;78:106-115. doi:10.1016/j.biocel.2016.06.022.
Google Scholar | Crossref | Medline30. Kij, A, Kus, K, Smeda, M, et al. Differential effects of nitric oxide deficiency on primary tumour growth, pulmonary metastasis and prostacyclin/thromboxane A2 balance in orthotopic and intravenous murine models of 4T1 breast cancer. J Physiol Pharmacol. 2018;69:911-919. doi:10.26402/jpp.2018.6.05.
Google Scholar | Crossref31. Nigjeh, SE, Yeap, SK, Nordin, N, Rahman, H, Rosli, R. In vivo anti-tumor effects of citral on 4T1 breast cancer cells via induction of apoptosis and downregulation of aldehyde dehydrogenase activity. Molecules. 2019;24:3241. doi:10.3390/molecules24183241.
Google Scholar | Crossref32. Carlow, DA, Gold, MR, Ziltener, HJ. Lymphocytes in the peritoneum home to the omentum and are activated by resident dendritic cells. J Immunol. 2009;183:1155-1165. doi:10.4049/jimmunol.0900409.
Google Scholar | Crossref | Medline33. Kreiter, S, Vormehr, M, van de Roemer, N, et al. Mutant MHC class II epitopes drive therapeutic immune responses to cancer. Nature. 2015;520:692-696. doi:10.1038/nature14426.
Google Scholar | Crossref | Medline34. Bautista-Jacobo, I, Rubio-Infante, N, Ilhuicatzi-Alvarado, D, Moreno-Fierros, L. Bacillus thuringiensis Cry1Ac toxin and protoxin do not provoke acute or chronic cytotoxicity on macrophages and leukocytes. In Vitro Cell Dev Biol Anim. 2021;57:42-52. doi:10.1007/s11626-020.
Google Scholar | Crossref | Medline35. Jimenez-Chavez, AJ, Moreno-Fierros, L, Bustos-Jaimes, I. Therapy with multi-epitope virus-like particles of B19 parvovirus reduce tumor growth and lung metastasis in an aggressive breast cancer mouse model. Vaccine. 2019;37:7256-7268. doi:10.1016/j.vaccine.2019.09.068.
Google Scholar | Crossref | Medline36. Merad, M, Sathe, P, Helft, J, Miller, J, Mortha, A. The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting. Annu Rev Immunol. 2013;31:563-604. doi:10.1146/annurev-immunol-020711-074950.
Google Scholar | Crossref | Medline | ISI37. Ibarra-Moreno, CD, Ilhuicatzi-Alvarado, D, Moreno-Fierros, L. Differential capability of Bacillus thuringiensis Cry1Ac protoxin and toxin to induce in vivo activation of dendritic cells and B lymphocytes. Dev Comp Immunol. 2021;121:104071. doi:10.1016/j.dci.2021.104071.
Google Scholar | Crossref | Medline38. Ghosn, EE, Cassado, AA, Govoni, GR, et al. Two physically, functionally, and developmentally distinct peritoneal macrophage subsets. Proc Natl Aca Sci USA. 2010;107:2568-2573. doi:10.1073/pnas.0915000107.
Google Scholar | Crossref | Medline | ISI39. Soliman, H, Mediavilla-Varela, M, Antonia, SJ. A GM-CSF and CD40L bystander vaccine is effective in a murine breast cancer model. Breast Cancer. 2015;7:389-397. doi:10.2147/BCTT.S89563.
Google Scholar | Crossref | Medline40. Yin, P, Liu, X, Mansfield, AS, et al. CpG-induced antitumor immunity requires IL-12 in expansion of effector cells and down-regulation of PD-1. Oncotarget. 2016;7:70223-70231. doi:10.18632/oncotarget.11833.
Google Scholar | Crossref | Medline41. Mendoza-Almanza, G, Rocha-Zavaleta, L, Aguilar-Zacarias, C, Ayala-Lujan, J, Olmos, J. Cry1A proteins are cytotoxic to HeLa but not to SiHa cervical cancer cells. Curr Pharmaceut Biotechnol. 2019;20:1018-1027. doi:10.2174/1389201020666190802114739.
Google Scholar | Crossref | Medline42. Tao, K, Fang, M, Alroy, J, Sahagian, GG. Imagable 4T1 model for the study of late stage breast cancer. BMC Cancer. 2008;8:228. doi:10.1186/1471-2407.
Google Scholar | Crossref | Medline | ISI43. Filipazzi, P, Valenti, R, Huber, V, et a

Comments (0)

No login
gif