1.
Kondov, B, Milenkovikj, Z, Kondov, G, et al. Presentation of the molecular subtypes of breast cancer detected by immunohistochemistry in surgically treated patients. Open Access Macedonian J Med Sci. 2018;6:961-967. doi:
10.3889/oamjms.2018.231.
Google Scholar |
Crossref |
Medline2.
Vidula, N, Bardia, A. Targeted therapy for metastatic triple negative breast cancer: the next frontier in precision oncology. Oncotarget. 2017;8:106167-106168. doi:
10.18632/oncotarget.22580.
Google Scholar |
Crossref |
Medline3.
Melero, I, Gaudernack, G, Gerritsen, W, et al. Therapeutic vaccines for cancer: an overview of clinical trials. Nat Rev Clin Oncol. 2014;11:509-524. doi:
10.1038/nrclinonc.2014.111.
Google Scholar |
Crossref |
Medline |
ISI4.
Banday, AH, Jeelani, S, Hruby, VJ. Cancer vaccine adjuvants—recent clinical progress and future perspectives. Immunopharmacol Immunotoxicol. 2015;37:1-11. doi:
10.3109/08923973.2014.971963.
Google Scholar |
Crossref |
Medline5.
Jie, J, Zhang, Y, Zhou, H, et al. CpG ODN1826 as a promising Mucin1-maltose-binding protein vaccine adjuvant induced DC maturation and enhanced antitumor immunity. Int J Mol Sci. 2018;19:920. doi:
10.3390/ijms19030920.
Google Scholar |
Crossref6.
Zhu, S, Lv, X, Zhang, X, et al. An effective dendritic cell-based vaccine containing glioma stem-like cell lysate and CpG adjuvant for an orthotopic mouse model of glioma. Int J Cancer. 2019;144:2867-2879. doi:
10.1002/ijc.32008.
Google Scholar |
Crossref |
Medline7.
Srivastava, AK, Yolcu, ES, Dinc, G, Sharma, RK, Shirwan, H. SA-4-1BBL/MPL as a novel immune adjuvant platform to combat cancer. Oncoimmunology. 2016;5:e1064580. doi:
10.1080/2162402X.2015.1064580.
Google Scholar |
Crossref8.
Yue, W, Chen, L, Yu, L, et al. Checkpoint blockade and nanosonosensitizer-augmented noninvasive sonodynamic therapy combination reduces tumour growth and metastases in mice. Nat Commun. 2019;10:2025. doi:
10.1038/s41467-019-09760-3.
Google Scholar |
Crossref |
Medline9.
Cho, JH, Lee, HJ, Ko, HJ, et al. The TLR7 agonist imiquimod induces anti-cancer effects via autophagic cell death and enhances anti-tumoral and systemic immunity during radiotherapy for melanoma. Oncotarget. 2017;8:24932-24948. doi:
10.18632/oncotarget.15326.
Google Scholar |
Crossref |
Medline10.
Doorduijn, EM, Sluijter, M, Salvatori, DC, et al. CD4(+) T cell and NK cell interplay key to regression of MHC class I(low) tumors upon TLR7/8 agonist therapy. Cancer Immunol Res. 2017;5:642-653. doi:
10.1158/2326-6066.CIR-16-0334.
Google Scholar |
Crossref |
Medline11.
Di, S, Zhou, M, Pan, Z, et al. Combined adjuvant of poly I:C improves antitumor effects of CAR-T cells. Front Oncol. 2019;9:241. doi:
10.3389/fonc.2019.00241.
Google Scholar |
Crossref |
Medline12.
Glaffig, M, Stergiou, N, Schmitt, E, Kunz, H. Immunogenicity of a fully synthetic MUC1 glycopeptide antitumor vaccine enhanced by poly(I:C) as a TLR3-activating adjuvant. ChemMedChem. 2017;12:722-727. doi:
10.1002/cmdc.201700254.
Google Scholar |
Crossref |
Medline13.
Peyret, V, Nazar, M, Martin, M, et al. Functional toll-like receptor 4 overexpression in papillary thyroid cancer by MAPK/ERK-induced ETS1 transcriptional activity. Mol Cancer Res. 2018;16:833-845. doi:
10.1158/1541-7786.MCR.
Google Scholar |
Crossref |
Medline14.
Bugge, M, Bergstrom, B, Eide, OK, et al. Surface toll-like receptor 3 expression in metastatic intestinal epithelial cells induces inflammatory cytokine production and promotes invasiveness. J Biol Chem. 2017;292:15408-15425. doi:
10.1074/jbc.M117.784090.
Google Scholar |
Crossref |
Medline15.
Pradere, JP, Dapito, DH, Schwabe, RF. The Yin and Yang of toll-like receptors in cancer. Oncogene. 2014;33:3485-3495. doi:
10.1038/onc.2013.302.
Google Scholar |
Crossref |
Medline16.
Qin, L, Wu, X, Block, ML, et al. Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration. Glia. 2007;55:453-462. doi:
10.1002/glia.20467.
Google Scholar |
Crossref |
Medline |
ISI17.
Furi, I, Sipos, F, Germann, TM, et al. Epithelial toll-like receptor 9 signaling in colorectal inflammation and cancer: clinico-pathogenic aspects. World J Gastroenterol. 2013;19:4119-4126. doi:
10.3748/wjg.v19.i26.4119.
Google Scholar |
Crossref |
Medline18.
Gomez, I, Sanchez, J, Munoz-Garay, C, et al. Bacillus thuringiensis Cry1A toxins are versatile proteins with multiple modes of action: two distinct pre-pores are involved in toxicity. Biochem J. 2014;459:383-396. doi:
10.1042/BJ20131408.
Google Scholar |
Crossref |
Medline19.
Vazquez, RI, Moreno-Fierros, L, Neri-Bazan, L, De La Riva, GA, Lopez-Revilla, R. Bacillus thuringiensis Cry1Ac protoxin is a potent systemic and mucosal adjuvant. Scand J Immunol. 1999;49:578-584. doi:
10.1046/j.1365-3083.1999.00534.x.
Google Scholar |
Crossref |
Medline20.
Moreno-Fierros, L, Ruiz-Medina, EJ, Esquivel, R, Lopez-Revilla, R, Pina-Cruz, S. Intranasal Cry1Ac protoxin is an effective mucosal and systemic carrier and adjuvant of Streptococcus pneumoniae polysaccharides in mice. Scand J Immunol. 2003;57:45-55. doi:
10.1046/j.1365-3083.2003.01190.x.
Google Scholar |
Crossref |
Medline21.
Moreno-Fierros, L, Garcia, N, Gutierrez, R, Lopez-Revilla, R, Vazquez-Padron, RI. Intranasal, rectal and intraperitoneal immunization with protoxin Cry1Ac from Bacillus thuringiensis induces compartmentalized serum, intestinal, vaginal and pulmonary immune responses in Balb/c mice. Microbes Infect. 2000;2:885-890. doi:
10.1016/s1286-4579(00)00398.
Google Scholar |
Crossref |
Medline22.
Rubio-Infante, N, Ilhuicatzi-Alvarado, D, Torres-Martinez, M, et al. The macrophage activation induced by Bacillus thuringiensis Cry1Ac protoxin involves ERK1/2 and p38 pathways and the interaction with cell-surface-HSP70. J Cell Biochem. 2018;119:580-598. doi:
10.1002/jcb.26216.
Google Scholar |
Crossref |
Medline23.
Moreno-Fierros, L, Garcia-Hernandez, AL, Ilhuicatzi-Alvarado, D, et al. Cry1Ac protoxin from Bacillus thuringiensis promotes macrophage activation by upregulating CD80 and CD86 and by inducing IL-6, MCP-1 and TNF-alpha cytokines. Int Immunopharmacol. 2013;17:1051-1066. doi:
10.1016/j.intimp.2013.10.005.
Google Scholar |
Crossref |
Medline24.
Legorreta-Herrera, M, Meza, RO, Moreno-Fierros, L. Pretreatment with Cry1Ac protoxin modulates the immune response, and increases the survival of Plasmodium-infected CBA/Ca mice. J Biomed Biotechnol. 2010;2010:198921. doi:
10.1155/2010/198921.
Google Scholar |
Crossref |
Medline25.
Rojas-Hernandez, S, Rodriguez-Monroy, MA, Lopez-Revilla, R, Resendiz-Albor, AA, Moreno-Fierros, L. Intranasal coadministration of the Cry1Ac protoxin with amoebal lysates increases protection against Naegleria fowleri meningoencephalitis. Infect Immun. 2004;72:4368-4375. doi:
10.1128/IAI.72.8.4368-4375.2004.
Google Scholar |
Crossref |
Medline26.
Ibarra-Moreno, S, Garcia-Hernandez, AL, Moreno-Fierros, L. Coadministration of protoxin Cry1Ac from Bacillus thuringiensis with metacestode extract confers protective immunity to murine cysticercosis. Parasite Immunol. 2014;36:266-270. doi:
10.1111/pim.12103.
Google Scholar |
Crossref27.
Gonzalez-Gonzalez, E, Garcia-Hernandez, AL, Flores-Mejia, R, Lopez-Santiago, R, Moreno-Fierros, L. The protoxin Cry1Ac of Bacillus thuringiensis improves the protection conferred by intranasal immunization with Brucella abortus RB51 in a mouse model. Veter Microbiol. 2015;175:382-388. doi:
10.1016/j.vetmic.2014.11.021.
Google Scholar |
Crossref |
Medline28.
Guerrero, GG, Dean, DH, Moreno-Fierros, L. Structural implication of the induced immune response by Bacillus thuringiensis Cry proteins: role of the N-terminal region. Mol Immunol. 2004;41:1177-1183. doi:
10.1016/j.molimm.2004.06.026.
Google Scholar |
Crossref |
Medline29.
Torres-Martinez, M, Rubio-Infante, N, Garcia-Hernandez, AL, Nava-Acosta, R, Ilhuicatzi-Alvarado, D, Moreno-Fierros, L. Cry1Ac toxin induces macrophage activation via ERK1/2, JNK and p38 mitogen-activated protein kinases. Int J Biochem Cell Biol. 2016;78:106-115. doi:
10.1016/j.biocel.2016.06.022.
Google Scholar |
Crossref |
Medline30.
Kij, A, Kus, K, Smeda, M, et al. Differential effects of nitric oxide deficiency on primary tumour growth, pulmonary metastasis and prostacyclin/thromboxane A2 balance in orthotopic and intravenous murine models of 4T1 breast cancer. J Physiol Pharmacol. 2018;69:911-919. doi:
10.26402/jpp.2018.6.05.
Google Scholar |
Crossref31.
Nigjeh, SE, Yeap, SK, Nordin, N, Rahman, H, Rosli, R. In vivo anti-tumor effects of citral on 4T1 breast cancer cells via induction of apoptosis and downregulation of aldehyde dehydrogenase activity. Molecules. 2019;24:3241. doi:
10.3390/molecules24183241.
Google Scholar |
Crossref32.
Carlow, DA, Gold, MR, Ziltener, HJ. Lymphocytes in the peritoneum home to the omentum and are activated by resident dendritic cells. J Immunol. 2009;183:1155-1165. doi:
10.4049/jimmunol.0900409.
Google Scholar |
Crossref |
Medline33.
Kreiter, S, Vormehr, M, van de Roemer, N, et al. Mutant MHC class II epitopes drive therapeutic immune responses to cancer. Nature. 2015;520:692-696. doi:
10.1038/nature14426.
Google Scholar |
Crossref |
Medline34.
Bautista-Jacobo, I, Rubio-Infante, N, Ilhuicatzi-Alvarado, D, Moreno-Fierros, L. Bacillus thuringiensis Cry1Ac toxin and protoxin do not provoke acute or chronic cytotoxicity on macrophages and leukocytes. In Vitro Cell Dev Biol Anim. 2021;57:42-52. doi:
10.1007/s11626-020.
Google Scholar |
Crossref |
Medline35.
Jimenez-Chavez, AJ, Moreno-Fierros, L, Bustos-Jaimes, I. Therapy with multi-epitope virus-like particles of B19 parvovirus reduce tumor growth and lung metastasis in an aggressive breast cancer mouse model. Vaccine. 2019;37:7256-7268. doi:
10.1016/j.vaccine.2019.09.068.
Google Scholar |
Crossref |
Medline36.
Merad, M, Sathe, P, Helft, J, Miller, J, Mortha, A. The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting. Annu Rev Immunol. 2013;31:563-604. doi:
10.1146/annurev-immunol-020711-074950.
Google Scholar |
Crossref |
Medline |
ISI37.
Ibarra-Moreno, CD, Ilhuicatzi-Alvarado, D, Moreno-Fierros, L. Differential capability of Bacillus thuringiensis Cry1Ac protoxin and toxin to induce in vivo activation of dendritic cells and B lymphocytes. Dev Comp Immunol. 2021;121:104071. doi:
10.1016/j.dci.2021.104071.
Google Scholar |
Crossref |
Medline38.
Ghosn, EE, Cassado, AA, Govoni, GR, et al. Two physically, functionally, and developmentally distinct peritoneal macrophage subsets. Proc Natl Aca Sci USA. 2010;107:2568-2573. doi:
10.1073/pnas.0915000107.
Google Scholar |
Crossref |
Medline |
ISI39.
Soliman, H, Mediavilla-Varela, M, Antonia, SJ. A GM-CSF and CD40L bystander vaccine is effective in a murine breast cancer model. Breast Cancer. 2015;7:389-397. doi:
10.2147/BCTT.S89563.
Google Scholar |
Crossref |
Medline40.
Yin, P, Liu, X, Mansfield, AS, et al. CpG-induced antitumor immunity requires IL-12 in expansion of effector cells and down-regulation of PD-1. Oncotarget. 2016;7:70223-70231. doi:
10.18632/oncotarget.11833.
Google Scholar |
Crossref |
Medline41.
Mendoza-Almanza, G, Rocha-Zavaleta, L, Aguilar-Zacarias, C, Ayala-Lujan, J, Olmos, J. Cry1A proteins are cytotoxic to HeLa but not to SiHa cervical cancer cells. Curr Pharmaceut Biotechnol. 2019;20:1018-1027. doi:
10.2174/1389201020666190802114739.
Google Scholar |
Crossref |
Medline42.
Tao, K, Fang, M, Alroy, J, Sahagian, GG. Imagable 4T1 model for the study of late stage breast cancer. BMC Cancer. 2008;8:228. doi:
10.1186/1471-2407.
Google Scholar |
Crossref |
Medline |
ISI43.
Filipazzi, P, Valenti, R, Huber, V, et a
Comments (0)