1. Veldeman, L, Madani, I, Hulstaert, F, De Meerleer, G, Mareel, M, De Neve, W. Evidence behind use of intensity-modulated radiotherapy: a systematic review of comparative clinical studies. Lancet Oncol. 2008;9(4):367-375.
Google Scholar |
Crossref |
Medline2. Teoh, M, Clark, CH, Wood, K, Whitaker, S, Nisbet, A. Volumetric modulated arc therapy: a review of current literature and clinical use in practice. Br J Radiol. 2011;84(1007):967-996.
Google Scholar |
Crossref |
Medline3. Li, H, Zhu, XR, Zhang, L, et al. Comparison of 2D radiographic images and 3D cone beam computed tomography for positioning head-and-neck radiotherapy patients. Int J Radiat Oncol Biol Phys. 2008;71(3):916-925.
Google Scholar |
Crossref |
Medline |
ISI4. Den, RB, Doemer, A, Kubicek, G, et al. Daily image guidance with cone-beam computed tomography for head-and-neck cancer intensity-modulated radiotherapy: a prospective study. Int J Radiat Oncol Biol Phys. 2010;76(5):1353-1359.
Google Scholar |
Crossref |
Medline |
ISI5. Kim, DW, Chung, WK, Yoon, M. Imaging doses and secondary cancer risk from kilovoltage cone-beam CT in radiation therapy. Health Phys. 2013;104(5):499-503.
Google Scholar |
Crossref |
Medline |
ISI6. Dzierma, Y, Mikulla, K, Richter, P, et al. Imaging dose and secondary cancer risk in image-guided radiotherapy of pediatric patients. Radiat Oncol. 2018;13(1):168.
Google Scholar |
Crossref |
Medline7. Cheng, JC-H, Liang, C-H, Wu, J-K, et al. Evaluation of radiation dose and positioning accuracy on x-ray volume imaging system for image-guided radiotherapy. Nuclear Inst Methods Phys Res Sect B, Beam Inter Mater Atoms. 2008;266(10):2203-2206.
Google Scholar |
Crossref8. Ding, GX, Munro, P, Pawlowski, J, Malcolm, A, Coffey, CW. Reducing radiation exposure to patients from kV-CBCT imaging. Radiother Oncol. 2010;97(3):585-592.
Google Scholar |
Crossref |
Medline9. Yan, H, Cervino, L, Jia, X, Jiang, SB. A comprehensive study on the relationship between the image quality and imaging dose in low-dose cone beam CT. Phys Med Biol. 2012;57(7):2063-2080.
Google Scholar |
Crossref |
Medline |
ISI10. Morrow, NV, Lawton, CA, Qi, XS, Li, XA. Impact of computed tomography image quality on image-guided radiation therapy based on soft tissue registration. Int J Radiat Oncol Biol Phys. 2012;82(5):e733-e738.
Google Scholar |
Crossref |
Medline11. Li, T, Li, X, Yang, Y, Zhang, Y, Heron, DE, Huq, MS. Simultaneous reduction of radiation dose and scatter for CBCT by using collimators. Med Phys. 2013;40(12):121913.
Google Scholar |
Crossref |
Medline12. Parsons, D, Robar, JL. An investigation of kV CBCT image quality and dose reduction for volume-of-interest imaging using dynamic collimation. Med Phys. 2015;42(9):5258-5269.
Google Scholar |
Crossref |
Medline13. Kamezawa, H, Arimura, H, Shirieda, K, Kameda, N, Ohki, M. Feasibility of patient dose reduction based on various noise suppression filters for cone-beam computed tomography in an image-guided patient positioning system. Phys Med Biol. 2016;61(9):3609-3636.
Google Scholar |
Crossref |
Medline14. Son, K, Chang, J, Lee, H, et al. Optimal dose reduction algorithm using an attenuation-based tube current modulation method for cone-beam CT imaging. PLoS One. 2018;13(2):e0192933.
Google Scholar |
Crossref |
Medline15. Mao, W, Liu, C, Gardner, SJ, et al. Evaluation and clinical application of a commercially available iterative reconstruction algorithm for CBCT-based IGRT. Technol Cancer Res Treat. 2019;18(1533033818823054).
Google Scholar16. Gardner, SJ, Mao, W, Liu, C, et al. Improvements in CBCT image quality using a novel iterative reconstruction algorithm: a clinical evaluation. Adv Radiat Oncol. 2019;4(2):390-400.
Google Scholar |
Crossref |
Medline17. Washio, H, Ohira, S, Funama, Y, et al. Metal artifact reduction using iterative CBCT reconstruction algorithm for head and neck radiation therapy: a phantom and clinical study. Eur J Radiol. 2020;132(109293):1–6.
Google Scholar18. Yu, L, Vrieze, TJ, Leng, S, Fletcher, JG, McCollough, CH. Technical note: measuring contrast- and noise-dependent spatial resolution of an iterative reconstruction method in CT using ensemble averaging. Med Phys. 2015;42(5):2261-2267.
Google Scholar |
Crossref |
Medline |
ISI19. Joemai, RMS, Geleijns, J. Assessment of structural similarity in CT using filtered backprojection and iterative reconstruction: a phantom study with 3D printed lung vessels. Br J Radiol. 2017;90(1079):20160519.
Google Scholar |
Crossref |
Medline20. Wang, A, Maslowski, A, Messmer, P, et al. Acuros CTS: a fast, linear Boltzmann transport equation solver for computed tomography scatter - part II: system modeling, scatter correction, and optimization. Med Phys. 2018;45(5):1914-1925.
Google Scholar |
Crossref |
Medline21. Mao, W, Gardner, SJ, Snyder, KC, et al. On the improvement of CBCT image quality for soft tissue-based SRS localization. J Appl Clin Med Phys. 2018;19(6):177-184.
Google Scholar |
Crossref |
Medline22. Wang, Z, Bovik, AC, Sheikh, HR, Simoncelli, EP. Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process. 2004;13(4):600-612.
Google Scholar |
Crossref |
Medline |
ISI23. Alikhani, B, Werner, M, Jamali, L, Wacker, F, Werncke, T. Image quality performance of virtual single-source CT using dual-source computed tomography. Acad Radiol. 2019;26(8):1095-1101.
Google Scholar |
Crossref |
Medline24. Oyama, A, Kumagai, S, Arai, N, et al. Image quality improvement in cone-beam CT using the super-resolution technique. J Radiat Res. 2018;59(4):501-510.
Google Scholar |
Crossref |
Medline25. Kim, DS, Lee, S, Kim, TH, et al. A respiratory-guided 4D digital tomosynthesis. Phys Med Biol. 2018;63(24):245007.
Google Scholar |
Crossref |
Medline26. Navran, A, Heemsbergen, W, Janssen, T, et al. The impact of margin reduction on outcome and toxicity in head and neck cancer patients treated with image-guided volumetric modulated arc therapy (VMAT). Radiother Oncol. 2019;130:25-31.
Google Scholar |
Crossref |
Medline27. Ding, GX, Alaei, P, Curran, B, et al. Image guidance doses delivered during radiotherapy: quantification, management, and reduction: report of the AAPM therapy physics committee task group 180. Med Phys. 2018;45(5):e84-e99.
Google Scholar |
Crossref |
Medline28. McCollough, CH, Yu, L, Kofler, JM, et al. Degradation of CT Low-contrast spatial resolution Due to the Use of iterative reconstruction and reduced dose levels. Radiology. 2015;276(2):499-506.
Google Scholar |
Crossref |
Medline29. Ueda, Y, Fukunaga, JI, Kamima, T, Adachi, Y, Nakamatsu, K, Monzen, H. Evaluation of multiple institutions’ models for knowledge-based planning of volumetric modulated arc therapy (VMAT) for prostate cancer. Radiat Oncol. 2018;13(1):46.
Google Scholar |
Crossref |
Medline30. Loutfi-Krauss, B, Kohn, J, Blumer, N, et al. Effect of dose reduction on image registration and image quality for cone-beam CT in radiotherapy. Strahlenther Onkol. 2015;191(2):192-200.
Google Scholar |
Crossref |
Medline
Comments (0)