Transcriptomic Analysis of Breast Cancer Patients Sensitive and Resistant to Chemotherapy: Looking for Overall Survival and Drug Resistance Biomarkers

1. Sung, H, Ferlay, J, Siegel, RL, et al. Global cancer statistics 2020: gLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209-249.
Google Scholar | Crossref | Medline2. Guiu, S, Arnould, L, Bonnetain, F, et al. Pathological response and survival after neoadjuvant therapy for breast cancer: a 30-year study. Breast. 2013;22(3):301-308.
Google Scholar | Crossref | Medline3. Krishnan, Y, Al Awadi, S, Sreedharan, PS, Sujith Nair, S, Thuruthel, S. Analysis of neoadjuvant therapies in breast cancer with respect to pathological complete response, disease-free survival and overall survival: 15 years follow-up data from Kuwait. Asia Pac J Clin Oncol. 2016;12(1):e30-e37.
Google Scholar | Crossref | Medline4. Xin, L, Liu, YH, Martin, TA, Jiang, WG. The era of multigene panels comes? The clinical utility of oncotype DX and MammaPrint. World J Oncol. 2017;8(2):34-40.
Google Scholar | Crossref | Medline5. Byron, SA, Van Keuren-Jensen, KR, Engelthaler, DM, Carpten, JD, Craig, DW. Translating RNA sequencing into clinical diagnostics: opportunities and challenges. Nat Rev Genet. 2016;17(5):257-271.
Google Scholar | Crossref | Medline6. Wang, Y, Mashock, M, Tong, Z, et al. Changing technologies of RNA sequencing and their applications in clinical oncology. Front Oncol. 2020;10(447):1-10.
Google Scholar7. Mootha, VK, Lindgren, CM, Eriksson, KF, et al. PGC-1 alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet. 2003;34(3):267-273.
Google Scholar | Crossref | Medline | ISI8. Subramanian, A, Tamayo, P, Mootha, VK, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102(43):15545-15550.
Google Scholar | Crossref | Medline | ISI9. Liberzon, A, Subramanian, A, Pinchback, R, Thorvaldsdottir, H, Tamayo, P, Mesirov, JP. Molecular signatures database (MSigDB) 3.0. Bioinformatics. 2011;27(12):1739-1740.
Google Scholar | Crossref | Medline | ISI10. Liberzon, A, Birger, C, Thorvaldsdottir, H, Ghandi, M, Mesirov, JP, Tamayo, P. The molecular signatures database (MSigDB) hallmark gene set collection. Cell Syst. 2015;1(6):417-425.
Google Scholar | Crossref | Medline11. Pereira, B, Chin, SF, Rueda, OM, et al. The somatic mutation profiles of 2,433 breast cancers refines their genomic and transcriptomic landscapes. Nat Commun. 2016;7(11479):1-15.
Google Scholar12. Cancer Genome Atlas N . Comprehensive molecular portraits of human breast tumours. Nature. 2012;490(7418):61-70.
Google Scholar | Crossref | Medline13. Early Breast Cancer Trialists’ Collaborative G . Long-term outcomes for neoadjuvant versus adjuvant chemotherapy in early breast cancer: meta-analysis of individual patient data from ten randomised trials. Lancet Oncol. 2018;19(1):27-39.
Google Scholar | Crossref | Medline14. Ji, X, Lu, Y, Tian, H, Meng, X, Wei, M, Cho, WC. Chemoresistance mechanisms of breast cancer and their countermeasures. Biomed Pharmacother. 2019;114(108800):1-9.
Google Scholar15. Karagiannis, GS, Pastoriza, JM, Wang, Y, et al. Neoadjuvant chemotherapy induces breast cancer metastasis through a TMEM-mediated mechanism. Sci Transl Med. 2017;9(397):1-30.
Google Scholar | Crossref | Medline16. Foulon, A, Theret, P, Rodat-Despoix, L, Kischel, P. Beyond chemotherapies: recent strategies in breast cancer treatment. Cancers (Basel). 2020;12(9):2634.
Google Scholar | Crossref17. Tan, W, Xie, X, Huang, Z, et al. Construction of an immune-related genes nomogram for the preoperative prediction of axillary lymph node metastasis in triple-negative breast cancer. Artif Cells Nanomed Biotechnol. 2020;48(1):288-297.
Google Scholar | Crossref | Medline18. Albain, KS, Paik, S, van't Veer, L. Prediction of adjuvant chemotherapy benefit in endocrine responsive, early breast cancer using multigene assays. Breast. 2009;18(Suppl 3):S141-S145.
Google Scholar | Crossref | Medline19. Brufsky, AM, Dickler, MN. Estrogen receptor-positive breast cancer: exploiting signaling pathways implicated in endocrine resistance. Oncologist. 2018;23(5):528-539.
Google Scholar | Crossref | Medline20. Kim, C, Gao, R, Sei, E, et al. Chemoresistance evolution in triple-negative breast cancer delineated by single-cell sequencing. Cell. 2018;173(4):879-893. e813.
Google Scholar | Crossref | Medline21. Lugo-Cintron, KM, Gong, MM, Ayuso, JM, et al. Breast fibroblasts and ECM components modulate breast cancer cell migration through the secretion of MMPs in a 3D microfluidic Co-culture model. Cancers (Basel). 2020;12(5):1173.
Google Scholar | Crossref | Medline22. Helal-Neto E, RMB-C, Barcellos-de-Souza P, AMV, Morgado-Diaz, J, Barja-Fidalgo, C. Extracellular matrix derived from high metastatic human breast cancer triggers epithelial-mesenchymal transition in epithelial breast cancer cells through alphavbeta3 integrin. Int J Mol Sci. 2020;21(8):2995.
Google Scholar | Medline23. Costa, B, Amorim, I, Gartner, F, Vale, N. Understanding breast cancer: from conventional therapies to repurposed drugs. Eur J Pharm Sci. 2020;151(105401):1-26.
Google Scholar | Medline24. Wanigasooriya, K, Tyler, R, Barros-Silva, JD, Sinha, Y, Ismail, T, Beggs, AD. Radiosensitising cancer using phosphatidylinositol-3-kinase (PI3K), protein kinase B (AKT) or mammalian target of rapamycin (mTOR) inhibitors. Cancers (Basel). 2020;12(5):1278.
Google Scholar | Crossref | Medline25. Mei, Y, Liao, X, Zhu, L, Yang, H. Overexpression of RSK4 reverses doxorubicin resistance in human breast cancer cells via PI3K/AKT signalling pathway. J Biochem. 2020;167(6):603-611.
Google Scholar | Crossref | Medline26. Hu, Y, Guo, R, Wei, J, et al. Effects of PI3K inhibitor NVP-BKM120 on overcoming drug resistance and eliminating cancer stem cells in human breast cancer cells. Cell Death Dis. 2015;6(e2020):1-15.
Google Scholar27. Burotto, M, Chiou, VL, Lee, JM, Kohn, EC. The MAPK pathway across different malignancies: a new perspective. Cancer. 2014;120(22):3446-3456.
Google Scholar | Crossref | Medline28. Yousefnia, S, Seyed Forootan, F, Seyed Forootan, S, Nasr Esfahani, MH, Gure, AO, Ghaedi, K. Mechanistic pathways of malignancy in breast cancer stem cells. Front Oncol. 2020;10(452):1-15.
Google Scholar | Medline29. Leontovich, AA, Zhang, S, Quatraro, C, et al. Raf-1 oncogenic signaling is linked to activation of mesenchymal to epithelial transition pathway in metastatic breast cancer cells. Int J Oncol. 2012;40(6):1858-1864.
Google Scholar | Medline30. De Angelis, ML, Francescangeli, F, Zeuner, A. Breast cancer stem cells as drivers of tumor chemoresistance, dormancy and relapse: new challenges and therapeutic opportunities. Cancers (Basel). 2019;11(10):1569.
Google Scholar | Crossref | Medline31. Katsuno, Y, Lamouille, S, Derynck, R. TGF-beta signaling and epithelial-mesenchymal transition in cancer progression. Curr Opin Oncol. 2013;25(1):76-84.
Google Scholar | Crossref | Medline | ISI32. Huang, S, Holzel, M, Knijnenburg, T, et al. MED12 Controls the response to multiple cancer drugs through regulation of TGF-beta receptor signaling. Cell. 2012;151(5):937-950.
Google Scholar | Crossref | Medline33. Brunen, D, Willems, SM, Kellner, U, Midgley, R, Simon, I, Bernards, R. TGF-beta: an emerging player in drug resistance. Cell Cycle. 2013;12(18):2960-2968.
Google Scholar | Crossref | Medline34. Bhagyaraj, E, Ahuja, N, Kumar, S, et al. TGF-beta induced chemoresistance in liver cancer is modulated by xenobiotic nuclear receptor PXR. Cell Cycle. 2019;18(24):3589-3602.
Google Scholar | Crossref | Medline35. Brown, JA, Yonekubo, Y, Hanson, N, et al. TGF-beta-induced quiescence mediates chemoresistance of tumor-propagating cells in squamous cell carcinoma. Cell Stem Cell. 2017;21(5):650-664. e658.
Google Scholar | Crossref | Medline36. de Kruijf, EM, Dekker, TJA, Hawinkels, L, et al. The prognostic role of TGF-beta signaling pathway in breast cancer patients. Ann Oncol. 2013;24(2):384-390.
Google Scholar | Crossref | Medline37. Insua-Rodriguez, J, Oskarsson, T. The extracellular matrix in breast cancer. Adv Drug Deliv Rev. 2016;97:41-55.
Google Scholar | Crossref | Medline38. Pickup, MW, Mouw, JK, Weaver, VM. The extracellular matrix modulates the hallmarks of cancer. EMBO Rep. 2014;15(12):1243-1253.
Google Scholar | Crossref | Medline | ISI39. Kim, HJ, Choi, WJ, Lee, CH. Phosphorylation and reorganization of keratin networks: implications for carcinogenesis and epithelial mesenchymal transition. Biomol Ther (Seoul). 2015;23(4):301-312.
Google Scholar | Crossref | Medline40. Karantza, V . Keratins in health and cancer: more than mere epithelial cell markers. Oncogene. 2011;30(2):127-138.
Google Scholar | Crossref | Medline | ISI41. Azzariti, A, Porcelli, L, Quatrale, AE, Silvestris, N, Paradiso, A. The coordinated role of CYP450 enzymes and P-gp in determining cancer resistance to chemotherapy. Curr Drug Metab. 2011;12(8):713-721.
Google Scholar | Crossref | Medline42. Lopez-Yoldi, M, Moreno-Aliaga, MJ, Bustos, M. Cardiotrophin-1: a multifaceted cytokine. Cytokine Growth Factor Rev. 2015;26(5):523-532.
Google Scholar | Crossref | Medline43. Yang, ZF, Lau, CK, Ngai, P, et al. Cardiotrophin-1 enhances regeneration of cirrhotic liver remnant after hepatectomy through promotion of angiogenesis and cell proliferation. Liver Int. 2008;28(5):622-631.
Google Scholar | Crossref | Medline44. Robledo, O, Chevalier, S, Froger, J, Barthelaix-Pouplard, A, Pennica, D, Gascan, H. Regulation of interleukin 6 expression by cardiotrophin 1. Cytokine. 1997;9(9):666-671.
Google Scholar | Crossref | Medline45. Viswanadhapalli, S, Luo, Y, Sareddy, GR, et al. EC359: a first-in-class small-molecule inhibitor for targeting oncogenic LIFR signaling in triple-negative breast cancer. Mol Cancer Ther. 2019;18(8):1341-1354.
Google Scholar | Crossref | Medline46. Zeng, LC, Han, ZG, Ma, WJ. Elucidation of subfamily segregation and intramolecular coevolution of the olfactomedin-like proteins by comprehensive phylogenetic analysis and gene expression pattern assessment. FEBS Lett. 2005;579(25):5443-5453.
Google Scholar | Crossref | Medline47. Torres, S, Bartolome, RA, Mendes, M, et al. Proteome profiling of cancer-associated fibroblasts identifies novel proinflammatory signatures and prognostic markers for colorectal cancer. Clin Cancer Res. 2013;19(21):6006-6019.
Google Scholar | Crossref | Medline48. Qiu, R, Shi, H, Wang, S, et al. BRMS1 coordinates with LSD1 and suppresses breast cancer cell metastasis. Am J Cancer Res. 2018;8(10):2030-2045.
Google Scholar | Medline49. Zhao, S, Zhang, J, Hou, X, et al. OLFML3 expression is decreased during prenatal muscle development and regulated by microRNA-155 in pigs. Int J Biol Sci. 2012;8(4):459-469.
Google Scholar | Crossref | Medline50. Sun, Y, Luo, DY, Zhu, YC, et al. Mir 3180-5p promotes proliferation in human bladder smooth muscle cell by targeting PODN under hydrodynamic pressure. Sci Rep. 2016;(6):33042.
Google Scholar51. Shimizu-Hirota, R, Sasamura, H, Kuroda, M, Kobayashi, E, Saruta, T. Functional characterization of podocan, a member of a new class in the small leucine-rich repeat protein family. FEBS Lett. 2004;563(1-3):69-74.

Comments (0)

No login
gif