1. ter Telgte, A, Wiegertjes, K, Tuladhar, AM, et al. Investigating the origin and evolution of cerebral small vessel disease: the RUN DMC – InTENse study. Eur Stroke J 2018; 3: 369–378.
Google Scholar |
SAGE Journals |
ISI2. Wardlaw, JM, Smith, C, Dichgans, M. Small vessel disease: mechanisms and clinical implications. Lancet Neurol 2019; 18: 684–696.
Google Scholar |
Crossref |
Medline3. Wardlaw, JM, Smith, EE, Biessels, GJ, et al.; STandards for ReportIng Vascular changes on nEuroimaging (STRIVE v1) . Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol 2013; 12: 822–838.
Google Scholar |
Crossref |
Medline |
ISI4. Baykara, E, Gesierich, B, Adam, R, et al.; Alzheimer's Disease Neuroimaging Initiative . A novel imaging marker for small vessel disease based on skeletonization of white matter tracts and diffusion histograms. Ann Neurol 2016; 80: 581–592.
Google Scholar |
Crossref |
Medline5. Konieczny, MJ, Dewenter, A, ter Telgte, A, et al. Multi-shell diffusion MRI models for white matter characterization in cerebral small vessel disease. Neurology 2021; 96: e698–e708.
Google Scholar |
Crossref |
Medline6. Tournier, J-D. Diffusion MRI in the brain – theory and concepts. Prog Nucl Magn Reson Spectrosc 2019; 112–113: 1–16.
Google Scholar |
Crossref |
Medline7. ter Telgte, A, van Leijsen, EMC, Wiegertjes, K, et al. Cerebral small vessel disease: from a focal to a global perspective. Nat Rev Neurol 2018; 14: 387–398.
Google Scholar |
Crossref |
Medline8. Rubinov, M, Sporns, O. Complex network measures of brain connectivity: Uses and interpretations. NeuroImage 2010; 52: 1059–1069.
Google Scholar |
Crossref |
Medline |
ISI9. Boot, EM, Mc van Leijsen, E, Bergkamp, MI, et al. Structural network efficiency predicts cognitive decline in cerebral small vessel disease. NeuroImage Clin 2020; 27: 102325.
Google Scholar |
Crossref |
Medline10. Reijmer, YD, Fotiadis, P, Martinez-Ramirez, S, et al. Structural network alterations and neurological dysfunction in cerebral amyloid angiopathy. Brain 2015; 138: 179–188.
Google Scholar |
Crossref |
Medline |
ISI11. Tuladhar, AM, Tay, J, Leijsen, E, van, et al. Structural network changes in cerebral small vessel disease. J Neurol Neurosurg Psychiatry 2020; 91: 196–203.
Google Scholar |
Crossref |
Medline12. Xu, X, Lau, KK, Wong, YK, et al. The effect of the total small vessel disease burden on the structural brain network. Sci Rep 2018; 8: 7442.
Google Scholar |
Crossref |
Medline13. Jeurissen, B, Leemans, A, Tournier, J-D, et al. Investigating the prevalence of complex fiber configurations in white matter tissue with diffusion magnetic resonance imaging. Hum Brain Mapp 2013; 34: 2747–2766.
Google Scholar |
Crossref |
Medline14. Welton, T, Kent, DA, Auer, DP, et al. Reproducibility of graph-theoretic brain network metrics: a systematic review. Brain Connect 2015; 5: 193–202.
Google Scholar |
Crossref |
Medline15. van Norden, AG, de Laat, KF, Gons, RA, et al. Causes and consequences of cerebral small vessel disease. The RUN DMC study: a prospective cohort study. Study rationale and protocol. BMC Neurol 2011; 11: 29.
Google Scholar |
Crossref |
Medline16. Tombaugh, TN. Trail making test a and B: Normative data stratified by age and education. Arch Clin Neuropsychol 2004; 19: 203–214.
Google Scholar |
Crossref |
Medline |
ISI17. Telgte, A, Wiegertjes, K, Gesierich, B, et al. The contribution of acute infarcts to cerebral small vessel disease progression. Ann Neurol 2019; 86: 582–592.
Google Scholar |
Crossref |
Medline18. Veraart, J, Novikov, DS, Christiaens, D, et al. Denoising of diffusion MRI using random matrix theory. NeuroImage 2016; 142: 394–406.
Google Scholar |
Crossref |
Medline19. Veraart, J, Fieremans, E, Novikov, DS. Diffusion MRI noise mapping using random matrix theory. Magn Reson Med 2016; 76: 1582–1593.
Google Scholar |
Crossref |
Medline20. Cordero-Grande, L, Christiaens, D, Hutter, J, et al. Complex diffusion-weighted image estimation via matrix recovery under general noise models. NeuroImage 2019; 200: 391–404.
Google Scholar |
Crossref |
Medline21. Tournier, J-D, Smith, R, Raffelt, D, et al. MRtrix3: a fast, flexible and open software framework for medical image processing and visualisation. NeuroImage 2019; 202: 116137.
Google Scholar |
Crossref |
Medline22. Kellner, E, Dhital, B, Kiselev, VG, et al. Gibbs-ringing artifact removal based on local subvoxel-shifts. Magn Reson Med 2016; 76: 1574–1581.
Google Scholar |
Crossref |
Medline23. Andersson, JLR, Skare, S, Ashburner, J. How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging. NeuroImage 2003; 20: 870–888.
Google Scholar |
Crossref |
Medline |
ISI24. Smith, SM, Jenkinson, M, Woolrich, MW, et al. Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage 2004; 23: S208–S219.
Google Scholar |
Crossref |
Medline |
ISI25. Andersson, JLR, Sotiropoulos, SN. An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging. NeuroImage 2016; 125: 1063–1078.
Google Scholar |
Crossref |
Medline26. Tabesh, A, Jensen, JH, Ardekani, BA, et al. Estimation of tensors and tensor-derived measures in diffusional kurtosis imaging. Magn Reson Med 2011; 65: 823–836.
Google Scholar |
Crossref |
Medline |
ISI27. Smith, SM, Jenkinson, M, Johansen-Berg, H, et al. Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. NeuroImage 2006; 31: 1487–1505.
Google Scholar |
Crossref |
Medline |
ISI28. Tournier, J-D, Calamante, F, Connelly, A. MRtrix: diffusion tractography in crossing fiber regions. Int J Imaging Syst Technol 2012; 22: 53–66.
Google Scholar |
Crossref |
ISI29. Smith, RE, Tournier, J-D, Calamante, F, et al. Anatomically-constrained tractography: Improved diffusion MRI streamlines tractography through effective use of anatomical information. NeuroImage 2012; 62: 1924–1938.
Google Scholar |
Crossref |
Medline30. Avants, BB, Tustison, NJ, Song, G, et al. A reproducible evaluation of ANTs similarity metric performance in brain image registration. NeuroImage 2011; 54: 2033–2044.
Google Scholar |
Crossref |
Medline |
ISI31. Gesierich, B, Tuladhar, AM, Telgte, A, ter, et al. Alterations and test–retest reliability of functional connectivity network measures in cerebral small vessel disease. Hum Brain Mapp 2020; 41: 2629–2641.
Google Scholar |
Crossref |
Medline32. Hagmann, P, Kurant, M, Gigandet, X, et al. Mapping human whole-brain structural networks with diffusion MRI. Plos One 2007; 2: e597.
Google Scholar |
Crossref |
Medline |
ISI33. Jeurissen, B, Tournier, J-D, Dhollander, T, et al. Multi-tissue constrained spherical deconvolution for improved analysis of multi-shell diffusion MRI data. NeuroImage 2014; 103: 411–426.
Google Scholar |
Crossref |
Medline34. Smith, RE, Tournier, J-D, Calamante, F, et al. SIFT2: enabling dense quantitative assessment of brain white matter connectivity using streamlines tractography. NeuroImage 2015; 119: 338–351.
Google Scholar |
Crossref |
Medline35. Hagmann, P, Cammoun, L, Gigandet, X, et al. Mapping the structural core of human cerebral cortex. PLOS Biol 2008; 6: e159.
Google Scholar |
Crossref |
Medline |
ISI36. R Core Team. R: a language and environment for statistical computing. Found Stat Comput. Vienna: Author, 2016.
Google Scholar37. Yeo, I, Johnson, RA. A new family of power transformations to improve normality or symmetry. Biometrika 2000; 87: 954–959.
Google Scholar |
Crossref |
ISI38. Bates, D, Mächler, M, Bolker, B, et al. Fitting linear mixed-effects models using lme4. ArXiv14065823 Stat,
http://arxiv.org/abs/1406.5823. 2014.
Google Scholar |
Crossref39. Kuznetsova, A, Brockhoff, PB, Christensen, RHB. lmerTest package: tests in linear mixed effects models. J Stat Softw 2017; 82: 1–26.
Google Scholar |
Crossref40. Canty, AJ, Ripley, B. boot: Bootstrap R (S-Plus) Functions: R Package Version 1.3-11. The R Package for Statistical Reporting: 2014.
Google Scholar41. Barton, K, Barton, MK. Package ‘Mu-MIn’: Multi-model inference Version 1. The R Package for Statistical Reporting: 2019.
Google Scholar42. Shrout, PE, Fleiss, JL. Intraclass correlations: Uses in assessing rater reliability. Psychol Bull 1979; 86: 420–428.
Google Scholar |
Crossref |
Medline |
ISI43. Benjamin, P, Zeestraten, E, Lambert, C, et al. Progression of MRI markers in cerebral small vessel disease: sample size considerations for clinical trials. J Cereb Blood Flow Metab off J Tab 2016; 36: 228–240.
Google Scholar |
SAGE Journals |
ISI44. Tiedt, S, Duering, M, Barro, C, et al. Serum neurofilament light: a biomarker of neuroaxonal injury after ischemic stroke. Neurology 2018; 91: e1338–e1347.
Google Scholar |
Crossref |
Medline45. Tuladhar, AM, Lawrence, A, Norris, DG, et al. Disruption of rich club organisation in cerebral small vessel disease. Hum Brain Mapp 2017; 38: 1751–1766.
Google Scholar |
Crossref |
Medline46. Finsterwalder, S, Vlegels, N, Gesierich, B, et al.’ Utrecht VCI study group . Small vessel disease more than Alzheimer’s disease determines diffusion MRI alterations in memory clinic patients. Alzheimers Dement 2020; 16: 1504–1514.
Google Scholar |
Crossref |
Medline47. Civier, O, Smith, RE, Yeh, C-H, et al. Is removal of weak connections necessary for graph-theoretical analysis of dense weighted structural connectomes from diffusion MRI? NeuroImage 2019; 194: 68–81.
Google Scholar |
Crossref |
Medline48. de Brito Robalo, BM, Vlegels, N, Meier, J, et al.; Utrecht VCI Study Group . Effect of fixed-density thresholding on structural brain networks: a demonstration in cerebral small vessel disease. Brain Connect 2020; 10: 121–133.
Google Scholar |
Crossref |
Medline49. Smith, EE, Biessels, GJ, De Guio, F, et al. Harmonizing brain magnetic resonance imaging methods for vascular contributions to neurodegeneration. Alzheimers Dement (Amst) 2019; 11: 191–204.
Google Scholar |
Crossref |
Medline
Comments (0)