RAGE-mediated T cell metabolic reprogramming shapes T cell inflammatory response after stroke

1. Hurford, R, Wolters, FJ, Li, L, et al. Prevalence, predictors, and prognosis of symptomatic intracranial stenosis in patients with transient ischaemic attack or minor stroke: a population-based cohort study. Lancet Neurol 2020; 19: 413–421.
Google Scholar | Crossref | Medline2. Man, S, Xian, Y, Holmes, DN, et al. Association between thrombolytic door-to-needle time and 1-year mortality and readmission in patients with acute ischemic stroke. Jama 2020; 323: 2170–2184.
Google Scholar | Crossref | Medline3. Park, YJ, Borlongan, CV. Recent advances in cell therapy for stroke. J Cereb Blood Flow Metab 2021; 41: 2797–2799.
Google Scholar | SAGE Journals | ISI4. An, C, Shi, Y, Li, P, et al. Molecular dialogs between the ischemic brain and the peripheral immune system: dualistic roles in injury and repair. Prog Neurobiol 2014; 115: 6–24.
Google Scholar | Crossref | Medline | ISI5. Na, SY, Mracsko, E, Liesz, A, et al. Amplification of regulatory T cells using a CD28 superagonist reduces brain damage after ischemic stroke in mice. Stroke 2015; 46: 212–220.
Google Scholar | Crossref | Medline | ISI6. Heindl, S, Ricci, A, Carofiglio, O, et al. Chronic T cell proliferation in brains after stroke could interfere with the efficacy of immunotherapies. J Exp Med 2021; 218: e20202411.
Google Scholar | Crossref | Medline7. Li, S, Huang, Y, Liu, Y, et al. Change and predictive ability of circulating immunoregulatory lymphocytes in long-term outcomes of acute ischemic stroke. J Cereb Blood Flow Metab 2021; 41: 2280–2294.
Google Scholar | SAGE Journals | ISI8. Huang, X, Hussain, B, Chang, J. Peripheral inflammation and blood-brain barrier disruption: effects and mechanisms. CNS Neurosci Ther 2021; 27: 36–47.
Google Scholar | Crossref | Medline9. Liesz, A, Suri-Payer, E, Veltkamp, C, et al. Regulatory T cells are key cerebroprotective immunomodulators in acute experimental stroke. Nat Med 2009; 15: 192–199.
Google Scholar | Crossref | Medline | ISI10. Li, P, Gan, Y, Sun, BL, et al. Adoptive regulatory T-cell therapy protects against cerebral ischemia. Ann Neurol 2013; 74: 458–471.
Google Scholar | Crossref | Medline | ISI11. Li, P, Mao, L, Zhou, G, et al. Adoptive regulatory T-cell therapy preserves systemic immune homeostasis after cerebral ischemia. Stroke 2013; 44: 3509–3515.
Google Scholar | Crossref | Medline12. Wang, HY, Ye, JR, Cui, LY, et al. Regulatory T cells in ischemic stroke. Acta Pharmacol Sin 2021. DOI: 10.1038/s41401-021-00641-4.
Google Scholar13. Wang, H, Wang, Z, Wu, Q, et al. Regulatory T cells in ischemic stroke. CNS Neurosci Ther 2021; 27: 643–651. 2021/01/21. DOI: 10.1111/cns.13611.
Google Scholar | Crossref | Medline14. Shi L, Sun Z, Su W, et al. Treg cell-derived osteopontin promotes microglia-mediated white matter repair after ischemic stroke. Immunity 2021; 54: 1527–1542.e8.
Google Scholar | Crossref15. Yang, K, Blanco, DB, Neale, G, et al. Homeostatic control of metabolic and functional fitness of Treg cells by LKB1 signalling. Nature 2017; 548: 602–606.
Google Scholar | Crossref | Medline16. Berod, L, Friedrich, C, Nandan, A, et al. De novo fatty acid synthesis controls the fate between regulatory T and T helper 17 cells. Nat Med 2014; 20: 1327–1333.
Google Scholar | Crossref | Medline17. Wang, X, Zhou, Y, Tang, D, et al. ACC1 (acetyl coenzyme a carboxylase 1) is a potential immune modulatory target of cerebral ischemic stroke. Stroke 2019; 50: 1869–1878.
Google Scholar | Crossref | Medline18. Roth, S, Singh, V, Tiedt, S, et al. Brain-released alarmins and stress response synergize in accelerating atherosclerosis progression after stroke. Sci Transl Med 2018; 10: 03–16. 2018//DOI: 10.1126/scitranslmed.aao1313.
Google Scholar | Crossref19. Liesz, A, Dalpke, A, Mracsko, E, et al. DAMP signaling is a key pathway inducing immune modulation after brain injury. J Neurosci 2015; 35: 583–598.
Google Scholar | Crossref | Medline | ISI20. Xie, J, Mendez, JD, Mendez-Valenzuela, V, et al. Cellular signalling of the receptor for advanced glycation end products (RAGE). Cell Signal 2013; 25: 2185–2197.
Google Scholar | Crossref | Medline | ISI21. Li, P, Wang, L, Zhou, Y, et al. C-C chemokine receptor type 5 (CCR5)-mediated docking of transferred tregs protects against early blood-brain barrier disruption after stroke. Jaha 2017; 6: e006387.
Google Scholar | Crossref22. Muhammad, S, Barakat, W, Stoyanov, S, et al. The HMGB1 receptor RAGE mediates ischemic brain damage. J Neurosci 2008; 28: 12023–12031.
Google Scholar | Crossref | Medline | ISI23. Percie Du Sert, N, Hurst, V, Ahluwalia, A, et al. The ARRIVE guidelines 2.0: updated guidelines for reporting animal research. J Cereb Blood Flow Metab 2020; 40: 1769–1777.
Google Scholar | SAGE Journals | ISI24. Cekanaviciute, E, Fathali, N, Doyle, KP, et al. Astrocytic transforming growth factor-beta signaling reduces subacute neuroinflammation after stroke in mice. Glia 2014; 62: 1227–1240.
Google Scholar | Crossref | Medline | ISI25. Rogers, DC, Campbell, CA, Stretton, JL, et al. Correlation between motor impairment and infarct volume after permanent and transient Middle cerebral artery occlusion in the rat. Stroke 1997; 28: 2060–2066.
Google Scholar | Crossref | Medline | ISI26. Bouet, V, Boulouard, M, Toutain, J, et al. The adhesive removal test: a sensitive method to assess sensorimotor deficits in mice. Nat Protoc 2009; 4: 1560–1564.
Google Scholar | Crossref | Medline | ISI27. Varanasi, SK, Kumar, SV, Rouse, BT. Determinants of tissue-specific metabolic adaptation of T cells. Cell Metab 2020; 32: 908–919.
Google Scholar | Crossref | Medline28. Chamorro, A, Meisel, A, Planas, AM, et al. The immunology of acute stroke. Nat Rev Neurol 2012; 8: 401–410.
Google Scholar | Crossref | Medline | ISI29. Wood, TR, Vu, PT, Comstock, BA, et al. Cytokine and chemokine responses to injury and treatment in a nonhuman primate model of hypoxic-ischemic encephalopathy treated with hypothermia and erythropoietin. J Cereb Blood Flow Metab 2021; 41: 2054–2066.
Google Scholar | SAGE Journals30. Li, Y, Zhu, ZY, Huang, TT, et al. The peripheral immune response after stroke-A double edge sword for blood-brain barrier integrity. CNS Neurosci Ther 2018; 24: 1115–1128.
Google Scholar | Crossref | Medline31. Brown, J, Kingsbury, C, Lee, JY, et al. Spleen participation in partial MHC class II construct neuroprotection in stroke. CNS Neurosci Ther 2020; 26: 663–669.
Google Scholar | Crossref | Medline32. Wong, CH, Jenne, CN, Lee, WY, et al. Functional innervation of hepatic iNKT cells is immunosuppressive following stroke. Science 2011; 334: 101–105.
Google Scholar | Crossref | Medline | ISI33. Li, J, Zeng, Q, Su, W, et al. FBXO10 prevents chronic unpredictable stress-induced behavioral despair and cognitive impairment through promoting RAGE degradation. CNS Neurosci Ther 2021; 27: 1504–1517.
Google Scholar | Crossref | Medline34. Vincent, AM, Perrone, L, Sullivan, KA, et al. Receptor for advanced glycation end products activation injures primary sensory neurons via oxidative stress. Endocrinology 2007; 148: 548–558.
Google Scholar | Crossref | Medline | ISI35. Orlova, VV, Choi, EY, Xie, C, et al. A novel pathway of HMGB1-mediated inflammatory cell recruitment that requires mac-1-integrin. Embo J 2007; 26: 1129–1139.
Google Scholar | Crossref | Medline | ISI36. Mao, L, Li, P, Zhu, W, et al. Regulatory T cells ameliorate tissue plasminogen activator-induced brain haemorrhage after stroke. Brain 2017; 140: 1914–1931.
Google Scholar | Crossref | Medline37. Zhang, H, Xia, Y, Ye, Q, et al. In vivo expansion of regulatory T cells with IL-2/IL-2 antibody complex protects against transient ischemic stroke. J Neurosci 2018; 38: 10168–10179.
Google Scholar | Crossref | Medline38. Ito, M, Komai, K, Mise-Omata, S, et al. Brain regulatory T cells suppress astrogliosis and potentiate neurological recovery. Nature 2019; 565: 246–250.
Google Scholar | Crossref | Medline

Comments (0)

No login
gif