Ultrastructural Analysis of Inflammatory Breast Cancer Cell Clusters in an Ex Vivo Environment Mechanically Mimicking the Lymph Vascular System

1. Hance, KW, Anderson, WF, Devesa, SS, Young, HA, Levine, PH. Trends in inflammatory breast carcinoma incidence and survival: the surveillance, epidemiology, and end results program at the National Cancer Institute. J Natl Cancer Inst. 2005;97:966-975. doi:10.1093/jnci/dji172.
Google Scholar | Crossref | Medline2. Lehman, HL, Dashner, EJ, Lucey, M, et al. Modeling and characterization of inflammatory breast cancer emboli grown in vitro. Int J Cancer. 2013;132:2283-2294. doi:10.1002/ijc.27928.
Google Scholar | Crossref | Medline3. Mego, M, Giordano, A, De Giorgi, U, et al. Circulating tumor cells in newly diagnosed inflammatory breast cancer. Breast Cancer Res BCR. 2015;17:2. doi:10.1186/s13058-014-0507-6.
Google Scholar | Crossref | Medline4. Aceto, N, Bardia, A, Miyamoto, DT, et al. Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis. Cell. 2014;158:1110-1122. doi:10.1016/j.cell.2014.07.013.
Google Scholar | Crossref | Medline | ISI5. Théry, C, Ostrowski, M, Segura, E. Membrane vesicles as conveyors of immune responses. Nat Rev Immunol. 2009;9:581-593. doi:10.1038/nri2567.
Google Scholar | Crossref | Medline | ISI6. Muralidharan-Chari, V, Clancy, JW, Sedgwick, A, D’Souza-Schorey, C. Microvesicles: mediators of extracellular communication during cancer progression. J Cell Sci. 2010;123:1603-1611. doi:10.1242/jcs.064386.
Google Scholar | Crossref | Medline | ISI7. do Amaral, JB, Urabayashi, MS, Machado-Santelli, GM. Cell death and lumen formation in spheroids of MCF-7 cells. Cell Biol Int. 2010;34:267-274. doi:10.1042/CBI20090024.
Google Scholar | Crossref | Medline8. Morales, J, Alpaugh, ML. Gain in cellular organization of inflammatory breast cancer: a 3D in vitro model that mimics the in vivo metastasis. BMC Cancer. 2009;9:462. doi:10.1186/1471-2407-9-462.
Google Scholar | Crossref | Medline | ISI9. Zu, Y, Sidhu, GS, Wieczorek, R, Cassai, ND. Ultrastructurally “invasive” microvilli in an aggressively metastasizing biphasic malignant mesothelioma. Ultrastruct Pathol. 2002;26:403-409. doi:10.1080/01913120290104719.
Google Scholar | Crossref | Medline10. Ren, J, Hamada, J, Okada, F, et al. Correlation between the presence of microvilli and the growth or metastatic potential of tumor cells. Jpn J Cancer Res Gann. 1990;81:920-926. doi:10.1111/j.1349-7006.1990.tb02668.x.
Google Scholar | Crossref | Medline11. Ren, J . Relationship between development of microvilli on tumor cells and growth or metastatic potential of tumor cells. Hokkaido Igaku Zasshi. 1991;66:187-200.
Google Scholar | Medline12. Tanaka, N, Miyamoto, T, Kimijima, Y, Mimura, M, Ichinose, S. Microvilli and desmosomes of squamous cell carcinoma cells in tongue carcinoma related to regional lymph node metastasis: ultrastructural and immunohistochemical studies with transferrin receptor. Med Electron Microsc. 2000;33:157-164. doi:10.1007/s007950000016.
Google Scholar | Crossref | Medline13. Dolo, V, D’Ascenzo, S, Violini, S, et al. Matrix-degrading proteinases are shed in membrane vesicles by ovarian cancer cells in vivo and in vitro. Clin Exp Metastasis. 1999;17:131-140. doi:10.1023/a:1006500406240.
Google Scholar | Crossref | Medline | ISI14. Ginestra, A, La Placa, MD, Saladino, F, Cassarà, D, Nagase, H, Vittorelli, ML. The amount and proteolytic content of vesicles shed by human cancer cell lines correlates with their in vitro invasiveness. Anticancer Res. 1998;18:3433-3437.
Google Scholar | Medline | ISI15. Schwager, SC, Bordeleau, F, Zhang, J, Antonyak, MA, Cerione, RA, Reinhart-King, CA. Matrix stiffness regulates microvesicle-induced fibroblast activation. Am J Physiol Cell Physiol. 2019;317:C82-C92. doi:10.1152/ajpcell.00418.2018.
Google Scholar | Crossref | Medline16. Zaidi, N, Lupien, L, Kuemmerle, NB, Kinlaw, WB, Swinnen, JV, Smans, K. Lipogenesis and lipolysis: the pathways exploited by the cancer cells to acquire fatty acids. Prog Lipid Res. 2013;52:585-589. doi:10.1016/j.plipres.2013.08.005.
Google Scholar | Crossref | Medline17. Cadenas, C, Vosbeck, S, Edlund, K, et al. LIPG-promoted lipid storage mediates adaptation to oxidative stress in breast cancer. Int J Cancer. 2019;145:901-915. doi:10.1002/ijc.32138.
Google Scholar | Crossref | Medline18. Blücher, C, Zilberfain, C, Venus, T, et al. Single cell study of adipose tissue mediated lipid droplet formation and biochemical alterations in breast cancer cells. Analyst. 2019;144:5558-5570. doi:10.1039/c9an00816k.
Google Scholar | Crossref | Medline19. Fouad, TM, Ueno, NT, Yu, RK, et al. Distinct epidemiological profiles associated with inflammatory breast cancer (IBC): a comprehensive analysis of the IBC registry at The University of Texas MD Anderson Cancer Center. PLoS ONE. 2018;13:e0204372. doi:10.1371/journal.pone.0204372.
Google Scholar | Crossref20. Blücher, C, Stadler, SC. Obesity and breast cancer: current insights on the role of fatty acids and lipid metabolism in promoting breast cancer growth and progression. Front Endocrinol. 2017;8:293. doi:10.3389/fendo.2017.00293.
Google Scholar | Crossref | Medline21. Stecklein, SR, Reddy, JP, Wolfe, AR, et al. Lack of breastfeeding history in parous women with inflammatory breast cancer predicts poor disease-free survival. J Cancer. 2017;8:1726-1732. doi:10.7150/jca.20095.
Google Scholar | Crossref | Medline

留言 (0)

沒有登入
gif