1. Strong, K, Mathers, C, Bonita, R. Preventing stroke: saving lives around the world. Lancet Neurol 2007; 6: 182–187.
Google Scholar |
Crossref |
Medline |
ISI2. Benjamin, EJ, Blaha, MJ, Chiuve, SE, et al.; American Heart Association Statistics Committee and Stroke Statistics Subcommittee . Heart disease and stroke statistics-2017 update: a report from the American Heart Association. Circulation 2017; 135: e146–e603.
Google Scholar |
Crossref |
Medline |
ISI3. Wang, Y, Liu, G, Hong, D, et al. White matter injury in ischemic stroke. Prog Neurobiol 2016; 141: 45–60.
Google Scholar |
Crossref |
Medline4. Cai, M, Zhang, W, Weng, Z, et al. Promoting neurovascular recovery in aged mice after ischemic stroke – prophylactic effect of omega-3 polyunsaturated fatty acids. Aging Dis 2017; 8: 531–545.
Google Scholar |
Crossref |
Medline5. Zamroziewicz, MK, Paul, EJ, Zwilling, CE, et al. Predictors of memory in healthy aging: polyunsaturated fatty acid balance and fornix white matter integrity. Aging Dis 2017; 8: 372–383.
Google Scholar |
Crossref |
Medline6. Ho, PW, Reutens, DC, Phan, TG, et al. Is white matter involved in patients entered into typical trials of neuroprotection? Stroke 2005; 36: 2742–2744.
Google Scholar |
Crossref |
Medline |
ISI7. Susuki, K, Rasband, MN. Molecular mechanisms of node of Ranvier formation. Curr Opin Cell Biol 2008; 20: 616–623.
Google Scholar |
Crossref |
Medline |
ISI8. Li, N, Leung, GK. Oligodendrocyte precursor cells in spinal cord injury: a review and update. Biomed Res Int 2015; 2015: 235195.
Google Scholar |
Medline9. Watzlawik, J, Warrington, AE, Rodriguez, M. Importance of oligodendrocyte protection, BBB breakdown and inflammation for remyelination. Expert Rev Neurother 2010; 10: 441–457.
Google Scholar |
Crossref |
Medline10. Sher, F, Balasubramaniyan, V, Boddeke, E, et al. Oligodendrocyte differentiation and implantation: new insights for remyelinating cell therapy. Curr Opin Neurol 2008; 21: 607–614.
Google Scholar |
Crossref |
Medline11. Fu, H, Hu, D, Zhang, L, et al. Efficacy of oligodendrocyte progenitor cell transplantation in rat models with traumatic thoracic spinal cord injury: a systematic review and meta-analysis. J Neurotrauma 2018; 35: 2507–2518.
Google Scholar |
Crossref |
Medline12. Chari, DM, Blakemore, WF. New insights into remyelination failure in multiple sclerosis: implications for glial cell transplantation. Mult Scler 2002; 8: 271–277.
Google Scholar |
SAGE Journals |
ISI13. Chen, LX, Ma, SM, Zhang, P, et al. Neuroprotective effects of oligodendrocyte progenitor cell transplantation in premature rat brain following hypoxic-ischemic injury. PLoS One 2015; 10: e0115997.
Google Scholar |
Medline |
ISI14. Wang, L, Geng, J, Qu, M, et al. Oligodendrocyte precursor cells transplantation protects blood-brain barrier in a mouse model of brain ischemia via Wnt/beta-catenin signaling. Cell Death Dis 2020; 11: 9.
Google Scholar |
Crossref |
Medline15. Cho, C, Smallwood, PM, Nathans, J. Reck and Gpr124 are essential receptor cofactors for Wnt7a/Wnt7b-specific signaling in mammalian CNS angiogenesis and blood-brain barrier regulation. Neuron 2017; 95: 1221–1225.
Google Scholar |
Crossref |
Medline16. Yuen, TJ, Silbereis, JC, Griveau, A, et al. Oligodendrocyte-encoded HIF function couples postnatal myelination and white matter angiogenesis. Cell 2014; 158: 383–396.
Google Scholar |
Crossref |
Medline |
ISI17. Corada, M, Nyqvist, D, Orsenigo, F, et al. The Wnt/beta-catenin pathway modulates vascular remodeling and specification by upregulating Dll4/notch signaling. Dev Cell 2010; 18: 938–949.
Google Scholar |
Crossref |
Medline |
ISI18. Olsen, JJ, Pohl, SO, Deshmukh, A, et al. The role of Wnt signalling in angiogenesis. Clin Biochem Rev 2017; 38: 131–142.
Google Scholar |
Medline19. Arai, K, Jin, G, Navaratna, D, et al. Brain angiogenesis in developmental and pathological processes: neurovascular injury and angiogenic recovery after stroke. Febs J 2009; 276: 4644–4652.
Google Scholar |
Crossref |
Medline |
ISI20. Hamanaka, G, Ohtomo, R, Takase, H, et al. White-matter repair: interaction between oligodendrocytes and the neurovascular unit. Brain Circ 2018; 4: 118–123.
Google Scholar |
Crossref |
Medline21. Percie Du Sert, N, Hurst, V, Ahluwalia, A, et al. The ARRIVE guidelines 2.0: updated guidelines for reporting animal research. J Cereb Blood Flow Metab 2020; 40: 1769–1777.
Google Scholar |
SAGE Journals |
ISI22. Chen, Y, Balasubramaniyan, V, Peng, J, et al. Isolation and culture of rat and mouse oligodendrocyte precursor cells. Nat Protoc 2007; 2: 1044–1051.
Google Scholar |
Crossref |
Medline |
ISI23. Yuan, F, Chang, S, Luo, L, et al. cxcl12 gene engineered endothelial progenitor cells further improve the functions of oligodendrocyte precursor cells. Exp Cell Res 2018; 367: 222–231.
Google Scholar |
Crossref |
Medline24. Geng, J, Wang, L, Qu, M, et al. Endothelial progenitor cells transplantation attenuated blood-brain barrier damage after ischemia in diabetic mice via HIF-1alpha. Stem Cell Res Ther 2017; 8: 163.
Google Scholar |
Crossref |
Medline25. Tang, G, Liu, Y, Zhang, Z, et al. Mesenchymal stem cells maintain blood-brain barrier integrity by inhibiting aquaporin-4 upregulation after cerebral ischemia. Stem Cells 2014; 32: 3150–3162.
Google Scholar |
Crossref |
Medline |
ISI26. Li, Y, Huang, J, He, X, et al. Postacute stromal cell-derived factor-1alpha expression promotes neurovascular recovery in ischemic mice. Stroke 2014; 45: 1822–1829.
Google Scholar |
Crossref |
Medline |
ISI27. Mu, ZH, Jiang, Z, Lin, XJ, et al. Vessel dilation attenuates endothelial dysfunction following middle cerebral artery occlusion in hyperglycemic rats. CNS Neurosci Ther 2016; 22: 316–324.
Google Scholar |
Crossref |
Medline28. Chen, C, Lin, X, Wang, J, et al. Effect of HMGB1 on the paracrine action of EPC promotes post-ischemic neovascularization in mice. Stem Cells 2014; 32: 2679–2689.
Google Scholar |
Crossref |
Medline |
ISI29. Miyamoto, Y, Yamauchi, J, Tanoue, A. Cdk5 phosphorylation of WAVE2 regulates oligodendrocyte precursor cell migration through nonreceptor tyrosine kinase fyn. J Neurosci 2008; 28: 8326–8337.
Google Scholar |
Crossref |
Medline |
ISI30. Jaffe, EA, Nachman, RL, Becker, CG, et al. Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. J Clin Invest 1973; 52: 2745–2756.
Google Scholar |
Crossref |
Medline |
ISI31. Huang, SM, Mishina, YM, Liu, S, et al. Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. Nature 2009; 461: 614–620.
Google Scholar |
Crossref |
Medline |
ISI32. von Maltzahn, J, Renaud, JM, Parise, G, et al. Wnt7a treatment ameliorates muscular dystrophy. Proc Natl Acad Sci USA 2012; 109: 20614–20619.
Google Scholar |
Crossref |
Medline33. Huang, J, Li, Y, Tang, Y, et al. CXCR4 antagonist AMD3100 protects blood-brain barrier integrity and reduces inflammatory response after focal ischemia in mice. Stroke 2013; 44: 190–197.
Google Scholar |
Crossref |
Medline |
ISI34. Tang, YH, Ma, YY, Zhang, ZJ, et al. Opportunities and challenges: stem cell-based therapy for the treatment of ischemic stroke. CNS Neurosci Ther 2015; 21: 337–347.
Google Scholar |
Crossref |
Medline35. Tang, Y, Wang, J, Lin, X, et al. Neural stem cell protects aged rat brain from ischemia-reperfusion injury through neurogenesis and angiogenesis. J Cereb Blood Flow Metab 2014; 34: 1138–1147.
Google Scholar |
SAGE Journals |
ISI36. Sun, P, Zhang, K, Hassan, SH, et al. Endothelium-targeted deletion of microRNA-15a/16-1 promotes poststroke angiogenesis and improves long-term neurological recovery. Circ Res 2020; 126: 1040–1057.
Google Scholar |
Crossref |
Medline37. Kanazawa, M, Takahashi, T, Ishikawa, M, et al. Angiogenesis in the ischemic core: a potential treatment target? J Cereb Blood Flow Metab 2019; 39: 753–769.
Google Scholar |
SAGE Journals |
ISI38. Zhang, H, Rzechorzek, W, Aghajanian, A, et al. Hypoxia induces de novo formation of cerebral collaterals and lessens the severity of ischemic stroke. J Cereb Blood Flow Metab 2020; 40: 1806–1822.
Google Scholar |
SAGE Journals |
ISI39. Rust, R. Insights into the dual role of angiogenesis following stroke. J Cereb Blood Flow Metab 2020; 40: 1167–1171.
Google Scholar |
SAGE Journals |
ISI40. Lim, RG, Quan, C, Reyes-Ortiz, AM, et al. Huntington's disease iPSC-derived brain microvascular endothelial cells reveal WNT-mediated angiogenic and blood-brain barrier deficits. Cell Rep 2017; 19: 1365–1377.
Google Scholar |
Crossref |
Medline |
ISI41. Chavali, M, Ulloa-Navas, MJ, Perez-Borreda, P, et al. Wnt-dependent oligodendroglial-endothelial interactions regulate white matter vascularization and attenuate injury. Neuron 2020; 108: 1130–1145.
Google Scholar |
Crossref |
Medline42. Arai, K, Lo, EH. Wiring and plumbing: oligodendrocyte precursors and angiogenesis in the oligovascular niche. J Cereb Blood Flow Metab 2021; 41: 2132–2133.
Google Scholar |
SAGE Journals |
ISI43. Tsai, HH, Niu, J, Munji, R, et al. Oligodendrocyte precursors migrate along vasculature in the developing nervous system. Science 2016; 351: 379–384.
Google Scholar |
Crossref |
Medline |
ISI44. Obermeier, B, Daneman, R, Ransohoff, RM. Development, maintenance and disruption of the blood-brain barrier. Nat Med 2013; 19: 1584–1596.
Google Scholar |
Crossref |
Medline |
ISI45. Song, FE, Huang, JL, Lin, SH, et al. Roles of NG2-glia in ischemic stroke. CNS Neurosci Ther 2017; 23: 547–553.
Google Scholar |
Crossref |
Medline46. Dai, X, Chen, J, Xu, F, et al. TGFalpha preserves oligodendrocyte lineage cells and improves white matter integrity after cerebral ischemia. J Cereb Blood Flow Metab 2020; 40: 639–655.
Google Scholar |
SAGE Journals |
ISI
Comments (0)