Male Breast Cancer—Immunohistochemical Patterns and Clinical Relevance of FASN, ATF3, and Collagen IV

1. Gao, Y, Heller, SL, Moy, L. Male breast cancer in the age of genetic testing: an opportunity for early detection, tailored therapy, and surveillance. Radiographics. 2018;38:1289-1311. doi:10.1148/rg.2018180013.
Google Scholar | Crossref | Medline2. Abdelwahab Yousef, AJ . Male breast cancer; Epidemiology and risk factors. Semin Oncol. 2017;44:267-272. doi:10.1053/j.seminoncol.2017.11.002.
Google Scholar | Crossref | Medline3. Lees, T, Cullinane, A, Condon, A, Shabaan, AM, Humphries, MP, Speirs, V. Characterising the adipose-inflammatory microenvironment in male breast cancer. Endocr Relat Cancer. 2018;25:773-781. doi:10.1530/ERC-17-0407.
Google Scholar | Crossref | Medline4. Shaaban, AM . Pathology of the male breast. Diagn Histopathol. 2019;25:138-142.
Google Scholar | Crossref5. Aleskandarany, MA, Vandenberghe, ME, Marchiò, C, Ellis, IO, Sapino, A, Rakha, EA. Tumour heterogeneity of breast cancer: from morphology to personalised medicine. Pathobiology. 2018;85:23-34. doi:10.1159/000477851.
Google Scholar | Crossref | Medline6. André, S, Pereira, T, Silva, F, et al. Male breast cancer: specific biological characteristics and survival in a Portuguese cohort. Mol Clin Oncol. 2019;10:644-654. doi:10.3892/mco.2019.1841.
Google Scholar | Crossref | Medline7. Zaha, DC . Significance of immunohistochemistry in breast cancer. World J Clin Oncol. 2014;5:382-392. doi:10.5306/wjco.v5.i3.382.
Google Scholar | Crossref | Medline8. Köbel, M, Piskorz, AM, Lee, S, et al. Optimized p53 immunohistochemistry is an accurate predictor of TP53 mutation in ovarian carcinoma. J Pathol Clin Res. 2016;2:247-258. doi:10.1002/cjp2.53.
Google Scholar | Crossref | Medline9. Lakhani, SR, Ellis, IO, Schnitt, SJ, Tan, PH, van de Vijver, MJ, eds. World Health Organization Classification of Tumors of the Breast. WHO Classification of Tumours. Lyon, France: IARC; 2012.
Google Scholar10. Amin, MB, Edge, SB, Greene, FL, et al. AJCC Cancer Staging Manual. 8th ed. New York, NY: Springer; 2017. doi:10.1007/978-3-319-40618-3.
Google Scholar | Crossref11. Schäler, J, Thaller, G, Hinrichs, D. A Language and Environment for Statistical Computing. Vol. 9. Vienna, Austria. R Foundation for Statistical Computing; 2018.
Google Scholar12. Liu, N, Johnson, KJ, Ma, CX. Male breast cancer: an updated surveillance, epidemiology, and end results data analysis. Clin Breast Cancer. 2018;18:e997-e1002. doi:10.1016/j.clbc.2018.06.013.
Google Scholar | Crossref13. Werb, Z, Lu, P. The role of stroma in tumor development. Cancer J. 2015;21:250-253. doi:10.1097/PPO.0000000000000127.
Google Scholar | Crossref | Medline14. LeBleu, VS, Kalluri, R. A peek into cancer-associated fibroblasts: origins, functions and translational impact. Dis Model Mech. 2018;11:dmm029447. doi:10.1242/dmm.029447.
Google Scholar | Crossref | Medline15. Wang, Y, Xu, H, Zhu, B, Qiu, Z, Lin, Z. Systematic identification of the key candidate genes in breast cancer stroma. Cell Mol Biol Lett. 2018;23:44. doi:10.1186/s11658-018-0110-4.
Google Scholar | Crossref | Medline16. Reiter, JG, Baretti, M, Gerold, JM, et al. An analysis of genetic heterogeneity in untreated cancers. Nat Rev Cancer. 2019;19:639-650. doi:10.1038/s41568-019-0185-x.
Google Scholar | Crossref | Medline17. Nieto, CM, Rider, LC, Cramer, SD. Influence of stromal-epithelial interactions on androgen action. Endocr Relat Cancer. 2014;21:T147-T160. doi:10.1530/ERC-14-0138.
Google Scholar | Crossref | Medline18. Giovannelli, P, Di Donato, M, Galasso, G, Di Zazzo, E, Bilancio, A, Migliaccio, A. The androgen receptor in breast cancer. Front Endocrinol (Lausanne). 2018;9:492. doi:10.3389/fendo.2018.00492.
Google Scholar | Crossref | Medline19. Di Lauro, L, Barba, M, Pizzuti, L, et al. Androgen receptor and antiandrogen therapy in male breast cancer. Cancer Lett. 2015;368:20-25. doi:10.1016/j.canlet.2015.07.040.
Google Scholar | Crossref | Medline20. Song, Q, Chen, Q, Wang, Q, et al. ATF-3/miR-590/GOLPH3 signaling pathway regulates proliferation of breast cancer. BMC Cancer. 2018;18:255. doi:10.1186/s12885-018-4031-4.
Google Scholar | Crossref | Medline21. Buganim, Y, Madar, S, Rais, Y, et al. Transcriptional activity of ATF3 in the stromal compartment of tumors promotes cancer progression. Carcinogenesis. 2011;32:1749-1757. doi:10.1093/carcin/bgr203.
Google Scholar | Crossref | Medline22. Wang, H, Jiang, M, Cui, H, et al. The stress response mediator ATF3 represses androgen signaling by binding the androgen receptor. Mol Cell Biol. 2012;32:3190-3202. doi:10.1128/MCB.00159-12.
Google Scholar | Crossref | Medline23. Lebok, P, Roming, M, Kluth, M, et al. P16 overexpression and 9p21 deletion are linked to unfavorable tumor phenotype in breast cancer. Oncotarget. 2016;7:81322-81331. doi:10.18632/oncotarget.13227.
Google Scholar | Crossref | Medline24. Di Sante, G, Di Rocco, A, Pupo, C, Casimiro, MC, Pestell, RG. Hormone-induced DNA damage response and repair mediated by cyclin D1 in breast and prostate cancer. Oncotarget. 2017;8:81803-81812. doi:10.18632/oncotarget.19413.
Google Scholar | Crossref | Medline25. Ortiz, AB, Garcia, D, Vicente, Y, Palka, M, Bellas, C, Martin, P. Prognostic significance of cyclin D1 protein expression and gene amplification in invasive breast carcinoma. PLoS ONE. 2017;12:e0188068. doi:10.1371/journal.pone.0188068.
Google Scholar | Crossref26. Pestell, TG, Jiao, X, Kumar, M, et al. Stromal cyclin D1 promotes heterotypic immune signaling and breast cancer growth. Oncotarget. 2017;8:81754-81775. doi:10.18632/oncotarget.19953.
Google Scholar | Crossref | Medline27. Kanthan, R, Fried, I, Rueckl, T, Senger, JL, Kanthan, SC. Expression of cell cycle proteins in male breast carcinoma. World J Surg Oncol. 2010;8:10. doi:10.1186/1477-7819-8-10.
Google Scholar | Crossref | Medline | ISI28. Nisticò, P, Di Modugno, F, Spada, S, Bissell, MJ. β1 and β4 integrins: from breast development to clinical practice. Breast Cancer Res. 2014;16:459. doi:10.1186/s13058-014-0459-x.
Google Scholar | Crossref | Medline29. Pan, B, Guo, J, Liao, Q, Zhao, Y. β1 and β3 integrins in breast, prostate and pancreatic cancer: a novel implication. Oncol Lett. 2018;15:5412-5416. doi:10.3892/ol.2018.8076.
Google Scholar | Crossref | Medline30. Eiro, N, Gonzalez, LO, Fraile, M, Cid, S, Schneider, J, Vizoso, FJ. Breast cancer tumor stroma: cellular components, phenotypic heterogeneity, intercellular communication, prognostic implications and therapeutic opportunities. Cancers (Basel). 2019;11:664. doi:10.3390/cancers11050664.
Google Scholar | Crossref31. Harjunpää, H, Llort Asens, M, Guenther, C, Fagerholm, SC. Cell adhesion molecules and their roles and regulation in the immune and tumor microenvironment. Front Immunol. 2019;10:1078. doi:10.3389/fimmu.2019.01078.
Google Scholar | Crossref32. Sökeland, G, Schumacher, U. The functional role of integrins during intra- and extravasation within the metastatic cascade. Mol Cancer. 2019;18:12. doi:10.1186/s12943-018-0937-3.
Google Scholar | Crossref | Medline33. Niu, J, Li, Z. The roles of integrin αvβ6 in cancer. Cancer Lett. 2017;403:128-137. doi:10.1016/j.canlet.2017.06.012.
Google Scholar | Crossref | Medline34. Jensen, KC, Schaeffer, DF, Cheang, M, et al. Characterization of a novel anti-fatty acid synthase (FASN) antiserum in breast tissue. Mod Pathol. 2008;21:1413-1420. doi:10.1038/modpathol.2008.163.
Google Scholar | Crossref | Medline35. Cai, Y, Wang, J, Zhang, L, et al. Expressions of fatty acid synthase and HER2 are correlated with poor prognosis of ovarian cancer. Med Oncol. 2015;32:391. doi:10.1007/s12032-014-0391-z.
Google Scholar | Crossref | Medline36. Giró-Perafita, A, Sarrats, A, Pérez-Bueno, F, et al. Fatty acid synthase expression and its association with clinico-histopathological features in triple-negative breast cancer. Oncotarget. 2017;8:74391-74405. doi:10.18632/oncotarget.20152.
Google Scholar | Crossref | Medline37. Baenke, F, Peck, B, Miess, H, Schulze, A. Hooked on fat: the role of lipid synthesis in cancer metabolism and tumour development. Dis Model Mech. 2013;6:1353-1363. doi:10.1242/dmm.011338.
Google Scholar | Crossref | Medline38. Menendez, JA, Lupu, R. Fatty acid synthase regulates estrogen receptor-α signaling in breast cancer cells. Expert Opin Ther Targets. 2017;21:1001-1016. doi:10.1038/oncsis.2017.4.
Google Scholar | Crossref | Medline39. Wu, Q, Ortegon, AM, Tsang, B, Doege, H, Feingold, KR, Stahl, A. FATP1 is an insulin-sensitive fatty acid transporter involved in diet-induced obesity. Mol Cell Biol. 2006;26:3455-3467. doi:10.1128/MCB.26.9.3455-3467.2006.
Google Scholar | Crossref | Medline | ISI40. Lopes-Coelho, F, André, S, Félix, A, Serpa, J. Breast cancer metabolic cross-talk: fibroblasts are hubs and breast cancer cells are gatherers of lipids. Mol Cell Endocrinol. 2018;462:93-106. doi:10.1016/j.mce.2017.01.031.
Google Scholar | Crossref | Medline41. Xu, N, Zhang, SO, Cole, RA, et al. The FATP1-DGAT2 complex facilitates lipid droplet expansion at the ER-lipid droplet interface. J Cell Biol. 2012;198:895-911. doi:10.1083/jcb.201201139.
Google Scholar | Crossref | Medline42. Barbosa, AD, Siniossoglou, S. Function of lipid droplet-organelle interactions in lipid homeostasis. Biochim Biophys Acta Mol Cell Res. 2017;1864:1459-1468. doi:10.1016/j.bbamcr.2017.04.001.
Google Scholar | Crossref | Medline43. Wu, H, Carvalho, P, Voeltz, GK. Here, there, and everywhere: the importance of ER membrane contact sites. Science. 2018;361:eaan5835. doi:10.1126/science.aan5835.
Google Scholar | Crossref44. Henne, WM, Goodman, JM, Hariri, H. Spatial compartmentalization of lipid droplet biogenesis. Biochim Biophys Acta Mol Cell Biol Lipids. 2020;1865:158499. doi:10.1016/j.bbalip.2019.07.008.
Google Scholar | Crossref | Medline45. Merta, H, Bahmanyar, S. The inner nuclear membrane takes on lipid metabolism. Dev Cell. 2018;47:397-399. doi:10.1016/j.devcel.2018.11.005.
Google Scholar | Crossref | Medline46. Sołtysik, K, Ohsaki, Y, Tatematsu, T, Cheng, J, Fujimoto, T. Nuclear lipid droplets derive from a lipoprotein precursor and regulate phosphatidylcholine synthesis. Nat Commun. 2019;10:473. doi:10.1038/s41467-019-09294-8.
Google Scholar | Crossref | Medline47. Esteves, A, Knoll-Gellida, A, Canclini, L, Silvarrey, MC, André, M, Babin, PJ. Fatty acid binding proteins have the potential to channel dietary fatty acids into enterocyte nuclei. J Lipid Res. 2016;57:219-232. doi:10.1194/jlr.M062232.
Google Scholar | Crossref |

留言 (0)

沒有登入
gif