1.
Fishman, S. Education in prosthetics and orthotics. Prosthet Orthot Int 1977; 1: 52–55.
Google Scholar |
SAGE Journals2.
Hughes, J, Jacobs, N. Normal human locomotion. Prosthet Orthot Int 1979; 3: 4–12.
Google Scholar |
SAGE Journals |
ISI3.
Perry, J. Gait analysis: normal pathological function. Thorofare, NJ: Slack Inc., 1992.
Google Scholar4.
Winter, DA. Biomechanics and motor control of human gait: normal, elderly and pathological. 2nd ed. Waterloo, ON, Canada: Waterloo Biomechanics, 1991.
Google Scholar5.
Gage, JR. Gait analysis in cerebral palsy. London: Mac Keith Press, 1991.
Google Scholar6.
Sutherland, DH. Gait disorders in childhood and adolescence. Baltimore, MD: Williams & Wilkins, 1984.
Google Scholar7.
Sjodahl, C, Jarnlo, GB, Soderberg, B, et al. Kinematic and kinetic gait analysis in the sagittal plane of transfemoral amputees before and after special gait re-education. Prosthet Orthot Int 2002; 26: 101–112.
Google Scholar |
SAGE Journals |
ISI8.
Sjodahl, C, Jarnlo, GB, Soderberg, B, et al. Pelvic motion in tran-femroal amputees in the frontal and transverse plane before and after special gait re-education. Prosthet Orthot Int 2003; 27: 227–237.
Google Scholar |
SAGE Journals |
ISI9.
Mensch, G, Ellis, PE. Running patterns of transfemoral amputees: a clinical analysis. Prosthet Orthot Int 1986; 10: 129–134.
Google Scholar |
SAGE Journals |
ISI10.
Radcliffe, CW. Above-knee prosthetics. Prosthet Orthot Int 1977; 1: 146–150.
Google Scholar |
SAGE Journals11.
Foort, J. Alignment of the above-knee prosthesis. Prosthet Orthot Int 1979; 3: 137–139.
Google Scholar |
SAGE Journals |
ISI12.
Friberg, O. Biomechanical significance of the correct length of lower limb prostheses: a clinical and radiological study. Prosthet Orthot Int 1984; 8: 124–129.
Google Scholar |
SAGE Journals |
ISI13.
Hughes, J. Biomechanics of the through-knee prosthesis. Prosthet Orthot Int 1983; 7: 96–99.
Google Scholar |
SAGE Journals |
ISI14.
Schuch, CM. Modern above-knee fitting practice: a report on the ISPO workshop on above-knee fitting and alignment techniques, , Miami, USA. Prosthet Orthot Int 1988; 12: 77–90.
Google Scholar15.
Pritham, CH. Biomechanics and shape of the above-knee socket considered in light of the ischial containment concept. Prosthet Orthot Int 1990; 14: 9–21.
Google Scholar |
SAGE Journals |
ISI16.
Gottschalk, FA, Stills, M. The biomechanics of trans-femoral amputation. Prosthet Orthot Int 1994; 18: 12–17.
Google Scholar |
SAGE Journals |
ISI17.
Lilja, M, Johansson, T, Oberg, T. Movement of the Tibial end in a PTB prosthesis socket: a sagittal X-ray study of the PTB prosthesis. Prosthet Orthot Int 1993; 17: 21–26.
Google Scholar |
SAGE Journals |
ISI18.
Convery, P, Buis, AWP. Conventional patellar-tendon-bearing (PTB) socket/stump interface dynamic pressure distributions recorded during the prosthetic stance phase of gait of a transtibial amputee. Prosthet Orthot Int 1998; 22: 193–198.
Google Scholar |
SAGE Journals |
ISI19.
Kim, WD, Lim, D, Hong, KS. An evaluation of the effectiveness of the patellar tendon bar in the transtibial patellar-tendon-bearing prosthesis socket. Prosthet Orthot Int 2003; 27: 23–35.
Google Scholar |
SAGE Journals |
ISI20.
Goswami, J, Lynn, R, Street, G, et al. Walking in a vacuum-assisted socket shifts the stump fluid balance. Prosthet Orthot Int 2003; 27: 107–113.
Google Scholar |
SAGE Journals |
ISI21.
Kobayashi, T, Orendurff, MS, Zhang, M, et al. Socket reaction moments in transtibial prostheses during walking at clinically perceived optimal alignment. Prosthet Orthot Int 2016; 40: 503–508.
Google Scholar |
SAGE Journals |
ISI22.
Dillon, MP, Barker, TM. Can partial foot prostheses effectively restore foot length. Prosthet Orthot Int 2006; 30: 17–23.
Google Scholar |
SAGE Journals |
ISI23.
Yaramenko, DA, Sytenko, AN, Bazhina, EN, et al. Prosthetic sockets of polymerized metal: materials, design, technology. Prosthet Orthot Int 1987; 11: 135–136.
Google Scholar |
SAGE Journals |
ISI24.
Klasson, BL. Carbon fibre and fibre lamination in prosthetics and orthotics: some basic theory and practical advice for the practitioner. Prosthet Orthot Int 1995; 19: 74–91.
Google Scholar |
SAGE Journals |
ISI25.
Current, TA, Kogler, GF, Barth, DG. Static structural testing of transtibial composite sockets. Prosthet Orthot Int 1999; 23: 113–122.
Google Scholar |
SAGE Journals |
ISI26.
Rogers, B, Bosker, GW, Crawford, RH, et al. Advanced trans-tibial socket fabrication using selective laser sintering. Prosthet Orthot Int 2007; 31: 88–100.
Google Scholar |
SAGE Journals |
ISI27.
Pousett, B, Lizcano, A, Raschke, SU. An investigation of the structural strength of transtibial sockets fabricated using conventional methods and rapid prototyping techniques. Can Prosthet Orthot J 2019; 2: 31008.
Google Scholar28.
Owen, MK, DesJardins, JD. Transtibial prosthetic socket strength: the use of ISO 10328 in the comparison of standard and 3D-printed sockets. J Prosthet Orthot 2020; 32: 93–100.
Google Scholar |
Crossref29.
Nickel, EA, Barrons, KJ, Owen, MK, et al. Strength testing of definitive transtibial prosthetic sockets made using 3D-printing technology. J Prosthet Orthot 2020; 32: 295–300.
Google Scholar |
Crossref30.
Quinlan, J, Yohay, J, Subramanian, V, et al. Using mechanical testing to assess the effect of lower-limb prosthetic socket texturing on longitudinal suspension. PLoS ONE 2020; 15: e0237841.
Google Scholar |
Crossref |
Medline31.
Quinlan, J, Subramanian, V, Yohay, J, et al. Using mechanical testing to assess texturing of prosthetic sockets to improve suspension in the transverse plane and reduce rotation. PLoS ONE 2020; 15: e0233148.
Google Scholar |
Crossref |
Medline32.
Grevsten, S. Ideas on the suspension of the below-knee prosthesis. Prosthet Orthot Int 1978; 2: 3–7.
Google Scholar |
SAGE Journals |
ISI33.
Narita, H, Yokogushi, K, Shii, S, et al. Suspension effect and dynamic evaluation of the total surface bearing (TSB) trans-tibial prosthesis: a comparison with the patellar tendon bearing (PTB) transtibial prosthesis. Prosthet Orthot Int 1997; 21: 175–178.
Google Scholar |
SAGE Journals |
ISI34.
Board, WJ, Street, GM, Caspers, C. A comparison of trans-tibial amputee suction and vacuum socket conditions. Prosthet Orthot Int 2001; 25: 202–209.
Google Scholar |
SAGE Journals |
ISI35.
Brunelli, S, Delussu, AS, Paradisi, F, et al. A comparison between the suction suspension system and the hypobaric ICEROSS Seal-In X5 in transtibial amputees. Prosthet Orthot Int 2013; 37: 436–444.
Google Scholar |
SAGE Journals |
ISI36.
Kristinsson, O. The ICEROSS concept: a discussion of a philosophy. Prosthet Orthot Int 1993; 17: 49–55.
Google Scholar |
SAGE Journals |
ISI37.
Cluitmans, J, Geboers, M, Deckers, J, et al. Experiences with respect to the ICEROSS system for transtibial prostheses. Prosthet Orthot Int 1994; 18: 78–83.
Google Scholar |
SAGE Journals |
ISI38.
Datta, D, Vaidya, SK, Howitt, J, et al. Outcome of fitting an ICEROSS prosthesis: views of transtibial amputees. Prosthet Orthot Int 1996; 20: 111–115.
Google Scholar |
SAGE Journals |
ISI39.
McCurdie, I, Hanspal, R, Nieveen, R. ICEROSS—a consensus view: a questionnaire survey of the use of ICEROSS in the United Kingdom. Prosthet Orthot Int 1997; 21: 124–128.
Google Scholar |
SAGE Journals |
ISI40.
Hatfield, AG, Morrison, JD. Polyurethan gel liner usage in the Oxford prosthetic service. Prosthet Orthot Int 2001; 25: 41–46.
Google Scholar |
SAGE Journals |
ISI41.
Astrom, I, Stenstrom, A. Effect on gait and socket comfort in unilateral transtibial amputees after exchange to a polyurethane concept. Prosthet Orthot Int 2004; 28: 28–36.
Google Scholar |
SAGE Journals |
ISI42.
Klute, GK, Rowe, GI, Mamishev, AV, et al. The thermal conductivity of prosthetic sockets and liners. Prosthet Orthot Int 2007; 31: 292–299.
Google Scholar |
SAGE Journals |
ISI43.
Radcliffe, CW. Four-bar linkage prosthetic knee mechanisms: kinematic, alignment and prescription criteria. Prosthet Orthot Int 1994; 18: 159–173.
Google Scholar |
SAGE Journals |
ISI44.
Fisher, LD, Judge, GW. Bouncy knee: a stance phase flex-extend knee unit. Prosthet Orthot Int 1985; 9: 129–136.
Google Scholar |
SAGE Journals |
ISI45.
Lamoureux, LW, Radcliffe, CW. Functional analysis of the UC-BL shank axial rotation device. Prosthet Orthot Int 1977; 1: 114–118.
Google Scholar |
SAGE Journals46.
Flick, KC, Orendurff, MS, Berge, JS, et al. Comparison of human turning gait with the mechanical performance of lower limb prosthetic transverse rotation. Prosthet Orthot Int 2005; 29: 73–81.
Google Scholar |
SAGE Journals |
ISI47.
Doane, NE, Holt, LE. A comparison of the SACH and single axis foot in the gait of unilateral below-knee amputees. Prosthet Orthot Int 1983; 7: 33–36.
Google Scholar |
SAGE Journals |
ISI48.
Goh, JCH, Solomonidis, SE, Spence, WD, et al. Biomechanical evaluation of SACH and uniaxial feet. Prosthet Orthot Int 1984; 8: 147–154.
Google Scholar |
SAGE Journals |
ISI49.
Thurston, AJ, Rastorfer, J, Burian, H, et al. The Flek-skin: a composite material for use in flexible shank below-knee prostheses. Prosth Orthot Int 1989; 13: 97–99.
Google Scholar |
SAGE Journals |
ISI50.
van Jaarsveld, HW, Grootenboer, HJ, de Vries, J, et al. Stiffness and hysteresis properties of some prosthetic feet. Prosthet Orthot Int 1990; 14: 117–124.
Google Scholar |
SAGE Journals |
ISI51.
Postema, K, Hermens, HJ, de Vries, J, et al. Energy storage and release of prosthetic feet. Part 1: biomechanical analysis related to user benefits. Prosthet Orthot Int 1997; 21: 17–27.
Google Scholar |
SAGE Journals |
ISI52.
Mason, ZD, Pearlman, J, Cooper, RA, et al. Comparison of prosthetic feet prescribed to active individuals using ISO standards. Prosthet Orthot Int 2011; 35: 418–424.
Google Scholar |
SAGE Journals |
ISI53.
Webber, CM, Kaufman, K. Instantaneous stiffness and hysteresis of dynamic elastic response prosthetic feet. Prosthet Orthot Int 2017; 41: 463–468.
Google Scholar |
SAGE Journals |
ISI54.
Major, MJ, Scham, J, Orendurff, M. The effects of common footwear on stance-phase mechanical properties of the prosthetic foot-shoe system. Prosthet Orthot Int 2018; 42: 198–207.
Google Scholar |
SAGE Journals |
ISI55.
Womac, ND, Neptune, RR, Klute. Stiffness and energy storage characteristics of energy storate and return prosthetic feet. Prosthet Orthot Int 2019; 43: 266–275.
Google Scholar |
SAGE Journals |
ISI56.
Kuo, AD, Donelan, JM. Dynamic principles of gait and their clinical implications. Phys Ther 2014; 90: 157–174.
Google Scholar |
Crossref57.
Hafner, BJ, Sanders, JE, Czerniecki, JM, et al. Energy storage and return prostheses: does patient perception correlate with biomechanical analysis. Clin Biomech 2002; 17: 325–344.
Google Scholar |
Crossref |
Medline |
ISI58.
Morgenroth, DC, Segal, AD, Zelik, KE, et al. The effect of prosthetic foot push-off on mechanical loading associated with knee osteoarthritis in lower extremity amputees. Gait Posture 2011; 34: 502–507.
Google Scholar |
Crossref |
Comments (0)