Key considerations for finite element modelling of the residuum–prosthetic socket interface

1. Zachariah, SG, Saxena, R, Fergason, JR, et al. Shape and volume change in the transtibial residuum over the short term: preliminary investigation of six subjects. J Rehabil Res Dev 2004; 41: 683–694.
Google Scholar | Crossref | Medline2. Smith, DG, Fergason, JR. Transtibial amputations. Clin Orthop Relat Res 1999; 361: 108–115.
Google Scholar | Crossref3. Pezzin, LE, Dillingham, TR, Mackenzie, EJ, et al. Use and satisfaction with prosthetic limb devices and related services. Arch Phys Med Rehabil 2004; 85: 723–729.
Google Scholar | Crossref | Medline | ISI4. International Society for Prosthetics Orthotics . ISPO Triennium report 2010-2013. Brussels, 2013, https://www.yumpu.com/en/document/view/23553065/ispo-triennium-report-2010-2013
Google Scholar5. Viceconti, M, Olsen, S, Nolte, LP, et al. Extracting clinically relevant data from finite element simulations. Clin Biomech 2005; 20: 451–454.
Google Scholar | Crossref | Medline | ISI6. Steer, JW, Grudniewski, PA, Browne, M, et al. Predictive prosthetic socket design: part 2 – generating person-specific candidate designs using multi-objective genetic algorithms. Biomech Model Mechanobiol 2019; 19: 1347–1360.
Google Scholar | Crossref | Medline7. Dickinson, AS, Steer, JW, Worsley, PR. Finite element analysis of the amputated lower limb: a systematic review and recommendations. Med Eng Phys 2017; 43: 1–18.
Google Scholar | Crossref | Medline8. Cagle, JC, Reinhall, PG, Allyn, KJ, et al. A finite element model to assess transtibial prosthetic sockets with elastomeric liners. Med Biol Eng Comput 2018; 56: 1227–1240.
Google Scholar | Crossref | Medline9. Sengeh, DM, Moerman, KM, Petron, A, et al. Multi-material 3-D viscoelastic model of a transtibial residuum from in-vivo indentation and MRI data. J Mech Behav Biomed Mater 2016; 59: 379–392.
Google Scholar | Crossref | Medline10. Portnoy, S, Siev-Ner, I, Yizhar, Z, et al. Surgical and morphological factors that affect internal mechanical loads in soft tissues of the transtibial residuum. Ann Biomed Eng 2009; 37: 2583–2605.
Google Scholar | Crossref | Medline | ISI11. Lacroix, D, Patiño, JF. Finite element analysis of donning procedure of a prosthetic transfemoral socket. Ann Biomed Eng 2011; 39: 2972–2983.
Google Scholar | Crossref | Medline | ISI12. Anderson, AE, Ellis, BJ, Weiss, JA. Verification, validation and sensitivity studies in computational biomechanics. Comput Method Biomech Biomed Eng 2007; 10: 171–184.
Google Scholar | Crossref | Medline13. Hoyt, K, Kneezel, T, Castaneda, B, et al. Quantitative sonoelastography for the in vivo assessment of skeletal muscle viscoelasticity. Phys Med Biol 2008; 53: 4063–4080.
Google Scholar | Crossref | Medline | ISI14. Palevski, A, Glaich, I, Portnoy, S, et al. Stress relaxation of porcine gluteus muscle subjected to sudden transverse deformation as related to pressure sore modeling. J Biomech Eng 2006; 128: 782–787.
Google Scholar | Crossref | Medline15. Reynolds, D. Shape design and interface load analysis for below-knee prosthetic sockets. PhD thesis, University of London, London, 1988.
Google Scholar16. Reilly, DT, Burstein, AH. The elastic and ultimate properties of compact bone tissue. J Biomech 1975; 8: 393–405.
Google Scholar | Crossref | Medline | ISI17. Staubli, HU, Schatzmann, L, Brunner, P, et al. Mechanical tensile properties of the quadriceps tendon and patellar ligament in young adults. Am J Sports Med 1999; 27: 27–34.
Google Scholar | SAGE Journals | ISI18. Pena, E, Calvo, B, Martinez, MA, et al. A three-dimensional finite element analysis of the combined behavior of ligaments and menisci in the healthy human knee joint. J Biomech 2006; 39: 1686–1701.
Google Scholar | Crossref | Medline | ISI19. Sanders, JE, Nicholson, BS, Zachariah, SG, et al. Testing of elastomeric liners used in limb prosthetics: classification of 15 products by mechanical performance. J Rehabil Res Dev 2004; 41: 175–186.
Google Scholar | Crossref | Medline20. Lee, WCC, Zhang, M, Jia, X, et al. Finite element modeling of the contact interface between trans-tibial residual limb and prosthetic socket. Med Eng Phys 2004; 26: 655–662.
Google Scholar | Crossref | Medline | ISI21. Koehler, SR, Dhaher, YY, Hansen, AH. Cross-validation of a portable, six-degree-of-freedom load cell for use in lower-limb prosthetics research. J Biomech 2014; 47: 1542–1547.
Google Scholar | Crossref | Medline | ISI22. Zachariah, SG, Sanders, JE. Finite element estimates of interface stress in the trans-tibial prosthesis using gap elements are different from those using automated contact. J Biomech 2000; 33: 895–899.
Google Scholar | Crossref | Medline | ISI23. Cagle, JC, Reinhall, PG, Hafner, BJ, et al. Development of standardized material testing protocols for prosthetic liners. J Biomech Eng 2017; 139: 0450011.
Google Scholar | Crossref24. Zhang, M, Lee, WCC. Quantifying the regional load-bearing ability of trans-tibial stumps. Prosthet Orthot Int 2006; 30: 25–34.
Google Scholar | SAGE Journals | ISI25. Oomens, CWJ, Bader, DL, Loerakker, S, et al. Pressure induced deep tissue injury explained. Ann Biomed Eng 2015; 43: 297–305.
Google Scholar | Crossref | Medline26. Steer, JW. Developing parametric finite element models of the residual limb – prosthetic socket system towards clinical application. University of Southampton, Southampton, 2019, https://eprints.soton.ac.uk/431899/
Google Scholar27. Goh, JCH, Lee, PVS, Chong, SY. Stump/socket pressure profiles of the pressure cast prosthetic socket. Clin Biomech 2003; 18: 237–243.
Google Scholar | Crossref | Medline28. Tang, J, McGrath, M, Hale, N, et al. A combined kinematic and kinetic analysis at the residuum/socket interface of a knee-disarticulation amputee. Med Eng Phys 2017; 49: 131–139.
Google Scholar | Crossref | Medline29. Moerman, KM, Sengeh, DM, Herr, HM. Automated and data-driven computational design of patient-specific biomechanical interfaces. Engrxiv, 2016, https://engrxiv.org/g8h9n/
Google Scholar30. Hoogendoorn, I, Reenalda, J, Koopman Rietman, JS. The effect of pressure and shear on tissue viability of human skin in relation to the development of pressure ulcers: a systematic review. J Tissue Viability 2017; 26: 157–171.
Google Scholar | Crossref | Medline31. Portnoy, S, Siev-Ner, I, Shabshin, N, et al. Patient-specific analyses of deep tissue loads post transtibial amputation in residual limbs of multiple prosthetic users. J Biomech 2009; 42: 2686–2693.
Google Scholar | Crossref | Medline | ISI32. Gefen, A, van Nierop, B, Bader, DL, et al. Strain-time cell-death threshold for skeletal muscle in a tissue-engineered model system for deep tissue injury. J Biomech 2008; 41: 2003–2012.
Google Scholar | Crossref | Medline33. Ramasamy, E, Avci, O, Dorow, B, et al. An efficient modelling-simulation-analysis workflow to investigate stump-socket interaction using patient-specific, three-dimensional, continuum-mechanical, finite element residual limb models. Front Bioeng Biotechnol 2018; 6: 126.
Google Scholar | Crossref | Medline34. Steer, JW, Worsley, PR, Browne, M, et al. Predictive prosthetic socket design: part 1 – population-based evaluation of transtibial prosthetic sockets by FEA-driven surrogate modelling. Biomech Model Mechanobiol 2020; 19: 1331–1346.
Google Scholar | Crossref | Medline35. Persson, BM, Liedberg, E. Measurement of maximal end-weight-bearing in lower limb amputees. Prosthet Orthot Int 1982; 6: 147–151.
Google Scholar | SAGE Journals | ISI36. Kobayashi, T, Orendurff, MS, Zhang, M, et al. Socket reaction moments in transtibial prostheses during walking at clinically perceived optimal alignment. Prosthet Orthot Int 2015; 40: 1–6.
Google Scholar37. Tönük, E, Silver-Thorn, MB. Nonlinear elastic material property estimation of lower extremity residual limb tissues. IEEE Trans Neural Syst Rehabil Eng 2003; 11: 43–53.
Google Scholar | Crossref | Medline | ISI38. Tönük, E, Silver-Thorn, MB. Nonlinear viscoelastic material property estimation of lower extremity residual limb tissues. J Biomech Eng 2004; 126: 289–300.
Google Scholar | Crossref | Medline39. Treloar, LRG . The elasticity of a network of long-chain molecules II. Trans Faraday Soc 1943; 29: 241–246.
Google Scholar | Crossref

Comments (0)

No login
gif