1.
Zachariah, SG, Saxena, R, Fergason, JR, et al. Shape and volume change in the transtibial residuum over the short term: preliminary investigation of six subjects. J Rehabil Res Dev 2004; 41: 683–694.
Google Scholar |
Crossref |
Medline2.
Smith, DG, Fergason, JR. Transtibial amputations. Clin Orthop Relat Res 1999; 361: 108–115.
Google Scholar |
Crossref3.
Pezzin, LE, Dillingham, TR, Mackenzie, EJ, et al. Use and satisfaction with prosthetic limb devices and related services. Arch Phys Med Rehabil 2004; 85: 723–729.
Google Scholar |
Crossref |
Medline |
ISI4.
International Society for Prosthetics Orthotics . ISPO Triennium report 2010-2013. Brussels, 2013,
https://www.yumpu.com/en/document/view/23553065/ispo-triennium-report-2010-2013 Google Scholar5.
Viceconti, M, Olsen, S, Nolte, LP, et al. Extracting clinically relevant data from finite element simulations. Clin Biomech 2005; 20: 451–454.
Google Scholar |
Crossref |
Medline |
ISI6.
Steer, JW, Grudniewski, PA, Browne, M, et al. Predictive prosthetic socket design: part 2 – generating person-specific candidate designs using multi-objective genetic algorithms. Biomech Model Mechanobiol 2019; 19: 1347–1360.
Google Scholar |
Crossref |
Medline7.
Dickinson, AS, Steer, JW, Worsley, PR. Finite element analysis of the amputated lower limb: a systematic review and recommendations. Med Eng Phys 2017; 43: 1–18.
Google Scholar |
Crossref |
Medline8.
Cagle, JC, Reinhall, PG, Allyn, KJ, et al. A finite element model to assess transtibial prosthetic sockets with elastomeric liners. Med Biol Eng Comput 2018; 56: 1227–1240.
Google Scholar |
Crossref |
Medline9.
Sengeh, DM, Moerman, KM, Petron, A, et al. Multi-material 3-D viscoelastic model of a transtibial residuum from in-vivo indentation and MRI data. J Mech Behav Biomed Mater 2016; 59: 379–392.
Google Scholar |
Crossref |
Medline10.
Portnoy, S, Siev-Ner, I, Yizhar, Z, et al. Surgical and morphological factors that affect internal mechanical loads in soft tissues of the transtibial residuum. Ann Biomed Eng 2009; 37: 2583–2605.
Google Scholar |
Crossref |
Medline |
ISI11.
Lacroix, D, Patiño, JF. Finite element analysis of donning procedure of a prosthetic transfemoral socket. Ann Biomed Eng 2011; 39: 2972–2983.
Google Scholar |
Crossref |
Medline |
ISI12.
Anderson, AE, Ellis, BJ, Weiss, JA. Verification, validation and sensitivity studies in computational biomechanics. Comput Method Biomech Biomed Eng 2007; 10: 171–184.
Google Scholar |
Crossref |
Medline13.
Hoyt, K, Kneezel, T, Castaneda, B, et al. Quantitative sonoelastography for the in vivo assessment of skeletal muscle viscoelasticity. Phys Med Biol 2008; 53: 4063–4080.
Google Scholar |
Crossref |
Medline |
ISI14.
Palevski, A, Glaich, I, Portnoy, S, et al. Stress relaxation of porcine gluteus muscle subjected to sudden transverse deformation as related to pressure sore modeling. J Biomech Eng 2006; 128: 782–787.
Google Scholar |
Crossref |
Medline15.
Reynolds, D. Shape design and interface load analysis for below-knee prosthetic sockets. PhD thesis, University of London, London, 1988.
Google Scholar16.
Reilly, DT, Burstein, AH. The elastic and ultimate properties of compact bone tissue. J Biomech 1975; 8: 393–405.
Google Scholar |
Crossref |
Medline |
ISI17.
Staubli, HU, Schatzmann, L, Brunner, P, et al. Mechanical tensile properties of the quadriceps tendon and patellar ligament in young adults. Am J Sports Med 1999; 27: 27–34.
Google Scholar |
SAGE Journals |
ISI18.
Pena, E, Calvo, B, Martinez, MA, et al. A three-dimensional finite element analysis of the combined behavior of ligaments and menisci in the healthy human knee joint. J Biomech 2006; 39: 1686–1701.
Google Scholar |
Crossref |
Medline |
ISI19.
Sanders, JE, Nicholson, BS, Zachariah, SG, et al. Testing of elastomeric liners used in limb prosthetics: classification of 15 products by mechanical performance. J Rehabil Res Dev 2004; 41: 175–186.
Google Scholar |
Crossref |
Medline20.
Lee, WCC, Zhang, M, Jia, X, et al. Finite element modeling of the contact interface between trans-tibial residual limb and prosthetic socket. Med Eng Phys 2004; 26: 655–662.
Google Scholar |
Crossref |
Medline |
ISI21.
Koehler, SR, Dhaher, YY, Hansen, AH. Cross-validation of a portable, six-degree-of-freedom load cell for use in lower-limb prosthetics research. J Biomech 2014; 47: 1542–1547.
Google Scholar |
Crossref |
Medline |
ISI22.
Zachariah, SG, Sanders, JE. Finite element estimates of interface stress in the trans-tibial prosthesis using gap elements are different from those using automated contact. J Biomech 2000; 33: 895–899.
Google Scholar |
Crossref |
Medline |
ISI23.
Cagle, JC, Reinhall, PG, Hafner, BJ, et al. Development of standardized material testing protocols for prosthetic liners. J Biomech Eng 2017; 139: 0450011.
Google Scholar |
Crossref24.
Zhang, M, Lee, WCC. Quantifying the regional load-bearing ability of trans-tibial stumps. Prosthet Orthot Int 2006; 30: 25–34.
Google Scholar |
SAGE Journals |
ISI25.
Oomens, CWJ, Bader, DL, Loerakker, S, et al. Pressure induced deep tissue injury explained. Ann Biomed Eng 2015; 43: 297–305.
Google Scholar |
Crossref |
Medline26.
Steer, JW. Developing parametric finite element models of the residual limb – prosthetic socket system towards clinical application. University of Southampton, Southampton, 2019,
https://eprints.soton.ac.uk/431899/ Google Scholar27.
Goh, JCH, Lee, PVS, Chong, SY. Stump/socket pressure profiles of the pressure cast prosthetic socket. Clin Biomech 2003; 18: 237–243.
Google Scholar |
Crossref |
Medline28.
Tang, J, McGrath, M, Hale, N, et al. A combined kinematic and kinetic analysis at the residuum/socket interface of a knee-disarticulation amputee. Med Eng Phys 2017; 49: 131–139.
Google Scholar |
Crossref |
Medline29.
Moerman, KM, Sengeh, DM, Herr, HM. Automated and data-driven computational design of patient-specific biomechanical interfaces. Engrxiv, 2016,
https://engrxiv.org/g8h9n/ Google Scholar30.
Hoogendoorn, I, Reenalda, J, Koopman Rietman, JS. The effect of pressure and shear on tissue viability of human skin in relation to the development of pressure ulcers: a systematic review. J Tissue Viability 2017; 26: 157–171.
Google Scholar |
Crossref |
Medline31.
Portnoy, S, Siev-Ner, I, Shabshin, N, et al. Patient-specific analyses of deep tissue loads post transtibial amputation in residual limbs of multiple prosthetic users. J Biomech 2009; 42: 2686–2693.
Google Scholar |
Crossref |
Medline |
ISI32.
Gefen, A, van Nierop, B, Bader, DL, et al. Strain-time cell-death threshold for skeletal muscle in a tissue-engineered model system for deep tissue injury. J Biomech 2008; 41: 2003–2012.
Google Scholar |
Crossref |
Medline33.
Ramasamy, E, Avci, O, Dorow, B, et al. An efficient modelling-simulation-analysis workflow to investigate stump-socket interaction using patient-specific, three-dimensional, continuum-mechanical, finite element residual limb models. Front Bioeng Biotechnol 2018; 6: 126.
Google Scholar |
Crossref |
Medline34.
Steer, JW, Worsley, PR, Browne, M, et al. Predictive prosthetic socket design: part 1 – population-based evaluation of transtibial prosthetic sockets by FEA-driven surrogate modelling. Biomech Model Mechanobiol 2020; 19: 1331–1346.
Google Scholar |
Crossref |
Medline35.
Persson, BM, Liedberg, E. Measurement of maximal end-weight-bearing in lower limb amputees. Prosthet Orthot Int 1982; 6: 147–151.
Google Scholar |
SAGE Journals |
ISI36.
Kobayashi, T, Orendurff, MS, Zhang, M, et al. Socket reaction moments in transtibial prostheses during walking at clinically perceived optimal alignment. Prosthet Orthot Int 2015; 40: 1–6.
Google Scholar37.
Tönük, E, Silver-Thorn, MB. Nonlinear elastic material property estimation of lower extremity residual limb tissues. IEEE Trans Neural Syst Rehabil Eng 2003; 11: 43–53.
Google Scholar |
Crossref |
Medline |
ISI38.
Tönük, E, Silver-Thorn, MB. Nonlinear viscoelastic material property estimation of lower extremity residual limb tissues. J Biomech Eng 2004; 126: 289–300.
Google Scholar |
Crossref |
Medline39.
Treloar, LRG . The elasticity of a network of long-chain molecules II. Trans Faraday Soc 1943; 29: 241–246.
Google Scholar |
Crossref
Comments (0)