1. Blockley, NP, Griffeth, VE, Simon, AB, et al. A review of calibrated blood oxygenation level-dependent (BOLD) methods for the measurement of task-induced changes in brain oxygen metabolism. NMR Biomed 2013; 26: 987–1003.
Google Scholar |
Crossref |
Medline |
ISI2. De Vis, JB, Hendrikse, J, Bhogal, A, et al. Age-related changes in brain hemodynamics; a calibrated MRI study. Hum Brain Mapp 2015; 36: 3973–3987.
Google Scholar |
Crossref |
Medline3. Hoge, RD. Calibrated FMRI. Neuroimage 2012; 62: 930–937.
Google Scholar |
Crossref |
Medline |
ISI4. Davis, TL, Kwong, KK, Weisskoff, RM, et al. Calibrated functional MRI: mapping the dynamics of oxidative metabolism. Proc Natl Acad Sci U S A 1998; 95: 1834–1839.
Google Scholar |
Crossref |
Medline |
ISI5. De Vis, JB, Petersen, ET, Bhogal, A, et al. Calibrated MRI to evaluate cerebral hemodynamics in patients with an internal carotid artery occlusion. J Cereb Blood Flow Metab 2015; 35: 1015–1023.
Google Scholar |
SAGE Journals |
ISI6. Liu, P, De Vis, JB, Lu, H. Cerebrovascular reactivity (CVR) MRI with CO2 challenge: a technical review. Neuroimage 2019; 187: 104–115.
Google Scholar |
Crossref |
Medline7. Gauthier, CJ, Hoge, RD. Magnetic resonance imaging of resting OEF and CMRO(2) using a generalized calibration model for hypercapnia and hyperoxia. Neuroimage 2012; 60: 1212–1225.
Google Scholar |
Crossref |
Medline |
ISI8. Wise, RG, Harris, AD, Stone, AJ, et al. Measurement of OEF and absolute CMRO2: MRI-based methods using interleaved and combined hypercapnia and hyperoxia. Neuroimage 2013; 83: 135–147.
Google Scholar |
Crossref |
Medline |
ISI9. Bulte, DP, Kelly, M, Germuska, M, et al. Quantitative measurement of cerebral physiology using respiratory-calibrated MRI. Neuroimage 2012; 60: 582–591.
Google Scholar |
Crossref |
Medline |
ISI10. Blockley, NP, Griffeth, VE, Stone, AJ, et al. Sources of systematic error in calibrated BOLD based mapping of baseline oxygen extraction fraction. Neuroimage 2015; 122: 105–113.
Google Scholar |
Crossref |
Medline11. Driver, ID, Wise, RG, Murphy, K. Graded hypercapnia-calibrated BOLD: beyond the iso-metabolic hypercapnic assumption. Front Neurosci 2017; 11: 276.
Google Scholar |
Crossref |
Medline12. Xu, F, Uh, J, Brier, MR, et al. The influence of carbon dioxide on brain activity and metabolism in conscious humans. J Cereb Blood Flow Metab 2011; 31: 58–67.
Google Scholar |
SAGE Journals |
ISI13. Xu, F, Liu, P, Pascual, JM, et al. Effect of hypoxia and hyperoxia on cerebral blood flow, blood oxygenation, and oxidative metabolism. J Cereb Blood Flow Metab 2012; 32: 1909–1918.
Google Scholar |
SAGE Journals |
ISI14. Zappe, AC, Uludağ, K, Oeltermann, A, et al. The influence of moderate hypercapnia on neural activity in the anesthetized nonhuman primate. Cereb Cortex 2008; 18: 2666–2673.
Google Scholar |
Crossref |
Medline |
ISI15. Driver, ID, Whittaker, JR, Bright, MG, et al. Arterial CO2 fluctuations modulate neuronal rhythmicity: Implications for MEG and fMRI studies of Resting-State networks. J Neurosci 2016; 36: 8541–8550.
Google Scholar |
Crossref |
Medline16. Kliefoth, AB, Grubb, RL, Raichle, ME. Depression of cerebral oxygen utilization by hypercapnia in the rhesus monkey. J Neurochem 1979; 32: 661–663.
Google Scholar |
Crossref |
Medline |
ISI17. Peng, SL, Ravi, H, Sheng, M, et al. Searching for a truly “iso-metabolic” gas challenge in physiological MRI. J Cereb Blood Flow Metab 2017; 37: 715–725.
Google Scholar |
SAGE Journals |
ISI18. Thesen, T, Leontiev, O, Song, T, et al. Depression of cortical activity in humans by mild hypercapnia. Hum Brain Mapp 2012; 33: 715–726.
Google Scholar |
Crossref |
Medline |
ISI19. Merola, A, Murphy, K, Stone, AJ, et al. Measurement of oxygen extraction fraction (OEF): an optimized BOLD signal model for use with hypercapnic and hyperoxic calibration. Neuroimage 2016; 129: 159–174.
Google Scholar |
Crossref |
Medline20. Griffeth, VE, Buxton, RB. A theoretical framework for estimating cerebral oxygen metabolism changes using the calibrated-BOLD method: modeling the effects of blood volume distribution, hematocrit, oxygen extraction fraction, and tissue signal properties on the BOLD signal. Neuroimage 2011; 58: 198–212.
Google Scholar |
Crossref |
Medline |
ISI21. Lu, HZ, Ge, YL. Quantitative evaluation of oxygenation in venous vessels using T2-relaxation-under-spin-tagging MRI. Magn Reson Med 2008; 60: 357–363.
Google Scholar |
Crossref |
Medline |
ISI22. Jespersen, SN, Ostergaard, L. The roles of cerebral blood flow, capillary transit time heterogeneity, and oxygen tension in brain oxygenation and metabolism. J Cereb Blood Flow Metab 2012; 32: 264–277.
Google Scholar |
SAGE Journals |
ISI23. Baez-Yanez, MG, Ehses, P, Mirkes, C, et al. The impact of vessel size, orientation and intravascular contribution on the neurovascular fingerprint of BOLD bSSFP fMRI. Neuroimage 2017; 163: 13–23.
Google Scholar |
Crossref |
Medline24. Faraco, CC, Strother, MK, Siero, JC, et al. The cumulative influence of hyperoxia and hypercapnia on blood oxygenation and R*(2). J Cereb Blood Flow Metab 2015; 35: 2032–2042.
Google Scholar |
SAGE Journals |
ISI25. Bhogal, AA, Siero, JC, Fisher, JA, et al. Investigating the non-linearity of the BOLD cerebrovascular reactivity response to targeted hypo/hypercapnia at 7T. Neuroimage 2014; 98: 296–305.
Google Scholar |
Crossref |
Medline |
ISI26. Champagne, AA, Bhogal, AA, Coverdale, NS, et al. A novel perspective to calibrate temporal delays in cerebrovascular reactivity using hypercapnic and hyperoxic respiratory challenges. Neuroimage 2019; 187: 154–165.
Google Scholar |
Crossref |
Medline27. Duffin, J, Sobczyk, O, McKetton, L, et al. Cerebrovascular resistance: the basis of cerebrovascular reactivity. Front Neurosci 2018; 12: 409.
Google Scholar |
Crossref |
Medline28. Bhogal, AA, De Vis, JB, Siero, JCW, et al. The BOLD cerebrovascular reactivity response to progressive hypercapnia in young and elderly. Neuroimage 2016; 139: 94–102.
Google Scholar |
Crossref |
Medline29. Donahue, MJ, Faraco, CC, Strother, MK, et al. Bolus arrival time and cerebral blood flow responses to hypercarbia. J Cereb Blood Flow Metab 2014; 34: 1243–1252.
Google Scholar |
SAGE Journals |
ISI30. Liu, P, Xu, F, Lu, H. Test-retest reproducibility of a rapid method to measure brain oxygen metabolism. Magn Reson Med 2013; 69: 675–681.
Google Scholar |
Crossref |
Medline |
ISI31. Xu, F, Uh, J, Liu, P, et al. On improving the speed and reliability of T2-relaxation-under-spin-tagging (TRUST) MRI. Magn Reson Med 2012; 68: 198–204.
Google Scholar |
Crossref |
Medline |
ISI32. Chappell, MA, Groves, AR, Whitcher, B, et al. Variational bayesian inference for a nonlinear forward model. Ieee Trans Signal Process 2009; 57: 223–236.
Google Scholar |
Crossref |
ISI33. Buxton, RB, Frank, LR, Wong, EC, et al. A general kinetic model for quantitative perfusion imaging with arterial spin labeling. Magn Reson Med 1998; 40: 383–396.
Google Scholar |
Crossref |
Medline |
ISI34. Siero, JC, Strother, MK, Faraco, CC, et al. In vivo quantification of hyperoxic arterial blood water T1. NMR Biomed 2015; 28: 1518–1525.
Google Scholar |
Crossref |
Medline |
ISI35. Rooney, WD, Johnson, G, Li, X, et al. Magnetic field and tissue dependencies of human brain longitudinal 1H2O relaxation in vivo. Magn Reson Med 2007; 57: 308–318.
Google Scholar |
Crossref |
Medline |
ISI36. Juttukonda, MR, Li, B, Almaktoum, R, et al. Characterizing cerebral hemodynamics across the adult lifespan with arterial spin labeling MRI data from the human connectome Project-Aging. Neuroimage 2021; 230: 117807.
Google Scholar |
Crossref |
Medline37. Zhang, Y, Brady, M, Smith, S. Segmentation of brain MR images through a hidden markov random field model and the expectation-maximization algorithm. IEEE Trans Med Imaging 2001; 20: 45–57.
Google Scholar |
Crossref |
Medline |
ISI38. Mazziotta, J, Toga, A, Evans, A, et al. A probabilistic atlas and reference system for the human brain: International consortium for brain mapping (ICBM). philosophical transactions of the. Royal Society of London Series B, Biological Sciences 2001; 356: 1293–1322.
Google Scholar |
Crossref |
Medline |
ISI39. Jenkinson, M, Beckmann, CF, Behrens, TE, et al. Fsl. Neuroimage 2012; 62: 782–790.
Google Scholar |
Crossref |
Medline |
ISI40. Smith, SM. Fast robust automated brain extraction. Hum Brain Mapp 2002; 17: 143–155.
Google Scholar |
Crossref |
Medline |
ISI41. Jenkinson, M, Smith, S. A global optimisation method for robust affine registration of brain images. Med Image Anal 2001; 5: 143–156.
Google Scholar |
Crossref |
Medline |
ISI42. Dash, RK, Korman, B, Bassingthwaighte, JB. Simple accurate mathematical models of blood HbO2 and HbCO2 dissociation curves at varied physiological conditions: evaluation and comparison with other models. Eur J Appl Physiol 2016; 116: 97–113.
Google Scholar |
Crossref |
Medline43. Collins, JA, Rudenski, A, Gibson, J, et al. Relating oxygen partial pressure, saturation and content: the haemoglobin-oxygen dissociation curve. Breathe (Sheffield, England) 2015; 11: 194–201.
Google Scholar |
Crossref |
Medline44. Hall, JE, Guyton, AC. Guyton and hall textbook of medical physiology. Saunders Elsevier. 2010. 12th edition.
Google Scholar45. Ashkanian, M, Gjedde, A, Mouridsen, K, et al. Carbogen inhalation increases oxygen transport to hypoperfused brain tissue in patients with occlusive carotid artery disease: increased oxygen transport to hypoperfused brain. Brain Res 2009; 1304: 90–95.
Google Scholar |
Crossref |
Medline |
ISI46. Ashkanian, M, Borghammer, P, Gjedde, A, et al. Improvement of brain tissue oxygenation by inhalation of carbogen. Neuroscience 2008; 156: 932–938.
Google Scholar |
Crossref |
Medline |
ISI47. Lu, H, Clingman, C, Golay, X, et al. Determining the longitudinal relaxation time (T1) of blood at 3.0 tesla. Magn Reson Med 2004; 52: 679–682.
Comments (0)