Arterial spin labeling demonstrates preserved regional cerebral blood flow in the P301L mouse model of tauopathy

1. Klohs, J. An integrated view on vascular dysfunction in Alzheimer’s disease. Neurodegener Dis 2019; 19: 109–127.
Google Scholar | Crossref | Medline2. Zlokovic, BV. Neurovascular pathways to neurodegeneration in Alzheimer’ s disease and other disorders. Nat Rev Neurosci 2011; 12: 723–738.
Google Scholar | Crossref | Medline | ISI3. Klohs, J, Rudin, M, Shimshek, DR, et al. Imaging of cerebrovascular pathology in animal models of Alzheimer’s disease. Front Aging Neurosci 2014; 6: 32.
Google Scholar | Crossref | Medline4. Lasagna-Reeves, CA, Castillo-Carranza, DL, Sengupta, U, et al. Identification of oligomers at early stages of tau aggregation in Alzheimer’ s disease. FASEB J 2012; 26: 1946–1959. doi:10.1096/fj.11-199851.
Google Scholar | Crossref | Medline5. Castillo-Carranza, DL, Nilson, AN, Van Skike, CE, et al. Cerebral microvascular accumulation of tau oligomers in Alzheimer’s disease and related tauopathies. Aging Dis 2017; 8: 257–266.
Google Scholar | Crossref | Medline6. Merlini, M, Wanner, D, Nitsch, RM. Tau pathology-dependent remodelling of cerebral arteries precedes Alzheimer’s disease-related microvascular cerebral amyloid angiopathy. Acta Neuropathol 2016; 131: 737–752.
Google Scholar | Crossref | Medline7. Steketee, RME, Bron, EE, Meijboom, R, et al. Early-stage differentiation between presenile Alzheimer’s disease and frontotemporal dementia using arterial spin labeling MRI. Eur Radiol 2016; 26: 244–253.
Google Scholar | Crossref | Medline8. Shimizu, S, Zhang, Y, Laxamana, J, et al. Concordance and discordance between brain perfusion and atrophy in frontotemporal dementia. Brain Imaging Behav 2010; 4: 46–54.
Google Scholar | Crossref | Medline9. Zhang, Y, Schuff, N, Ching, C, et al. Joint assessment of structural, perfusion, and diffusion MRI in Alzheimer’s disease and frontotemporal dementia. Int J Alzheimers Dis 2011; 2011: 546871.
Google Scholar | Medline10. Hu, WT, Wang, Z, Lee, VMY, et al. Distinct cerebral perfusion patterns in FTLD and AD. Neurology 2010; 75: 881–888.
Google Scholar | Crossref | Medline | ISI11. Binnewijzend, MAA, Kuijer, JPA, Van Der Flier, WM, et al. Distinct perfusion patterns in Alzheimer’s disease, frontotemporal dementia and dementia with Lewy bodies. Eur Radiol 2014; 24: 2326–2333.
Google Scholar | Crossref | Medline12. Du, AT, Jahng, GH, Hayasaka, S, et al. Hypoperfusion in frontotemporal dementia and Alzheimer disease by arterial spin labeling MRI. Neurology 2006; 67: 1215–1220.
Google Scholar | Crossref | Medline | ISI13. Dopper, EGP, Chalos, V, Ghariq, E, et al. Cerebral blood flow in presymptomatic MAPT and GRN mutation carriers: a longitudinal arterial spin labeling study. NeuroImage Clin 2016; 12: 460–465.
Google Scholar | Crossref | Medline14. Götz, J, Ittner, LM. Animal models of Alzheimer’s disease and frontotemporal dementia. Nat Rev Neurosci 2008; 9: 532–544.
Google Scholar | Crossref | Medline | ISI15. Götz, J, Chen, F, Van Dorpe, J, et al. Formation of neurofibrillary tangles in P301L tau transgenic mice induced by Aβ42 fibrils. Science 2001; 293: 1491–1495.
Google Scholar | Crossref | Medline | ISI16. Santacruz, K, Lewis, J, Spires, T, et al. Medicine: Tau suppression in a neurodegenerative mouse model improves memory function. Science 2005; 309: 476–481.
Google Scholar | Crossref | Medline | ISI17. Ramsden, M, Kotilinek, L, Forster, C, et al. Age-dependent neurofibrillary tangle formation, neuron loss, and memory impairment in a mouse model of human tauopathy (P301L). J Neurosci 2005; 25: 10637–10647.
Google Scholar | Crossref | Medline | ISI18. Tatebayashi, Y, Miyasaka, T, Chui, DH, et al. Tau filament formation and associative memory deficit in aged mice expressing mutant (R406W) human tau. Proc Natl Acad Sci USA 2002; 99: 13896–13901.
Google Scholar | Crossref | Medline | ISI19. Dawson, HN, Cantillana, V, Chen, L, et al. The tau N279K exon 10 splicing mutation recapitulates frontotemporal dementia and parkinsonism linked to chromosome 17 tauopathy in a mouse model. J Neurosci 2007; 27: 9155–9168.
Google Scholar | Crossref | Medline | ISI20. Mocanu, MM, Nissen, A, Eckermann, K, et al. The potential for β-structure in the repeat domain of tau protein determines aggregation, synaptic decay, neuronal loss, and coassembly with endogenous tau in inducible mouse models of tauopathy. J Neurosci 2008; 28: 737–748.
Google Scholar | Crossref | Medline | ISI21. Yoshiyama, Y, Higuchi, M, Zhang, B, et al. Synapse loss and microglial activation precede tangles in a P301S tauopathy mouse model. Neuron 2007; 53: 337–351.
Google Scholar | Crossref | Medline | ISI22. Blair, LJ, Frauen, HD, Zhang, B, et al. Tau depletion prevents progressive blood-brain barrier damage in a mouse model of tauopathy. Acta Neuropathol Commun 2015; 3: 8.
Google Scholar | Crossref | Medline23. Bennett, RE, Robbins, AB, Hu, M, et al. Tau induces blood vessel abnormalities and angiogenesis-related gene expression in P301L transgenic mice and human Alzheimer’s disease. Proc Natl Acad Sci USA 2018; 115: E1289–E1298.
Google Scholar | Crossref | Medline24. Ni, R, Zarb, Y, Kuhn, GA, et al. SWI and phase imaging reveal intracranial calcifications in the P301L mouse model of human tauopathy. MAGMA 2020; 33: 769–781.
Google Scholar | Crossref | Medline25. Wells, JA, Holmes, HE, O'Callaghan, JM, et al. Increased cerebral vascular reactivity in the tau expressing rTg4510 mouse: evidence against the role of tau pathology to impair vascular health in Alzheimer’s disease. J Cereb Blood Flow Metab 2015; 35: 359–362.
Google Scholar | SAGE Journals | ISI26. Wells, JA, O'Callaghan, JM, Holmes, HE, et al. In vivo imaging of tau pathology using multi-parametric quantitative MRI. Neuroimage 2015; 111: 369–378.
Google Scholar | Crossref | Medline27. Park, L, Hochrainer, K, Hattori, Y, et al. Tau induces PSD95–neuronal NOS uncoupling and neurovascular dysfunction independent of neurodegeneration. Nat Neurosci 2020; 23: 1079–1089.
Google Scholar | Crossref | Medline28. Govaerts, K, Lechat, B, Struys, T, et al. Longitudinal assessment of cerebral perfusion and vascular response to hypoventilation in a bigenic mouse model of Alzheimer’s disease with amyloid and tau pathology. NMR Biomed 2019; 32: 1–12.
Google Scholar | Crossref29. Holmes, HE, Colgan, N, Ismail, O, et al. Imaging the accumulation and suppression of tau pathology using multiparametric MRI. Neurobiol Aging 2016; 39: 184–194.
Google Scholar | Crossref | Medline30. Götz, J, Chen, F, Barmettler, R, et al. Tau filament formation in transgenic mice expressing P301L tau. J Biol Chem 2001; 276: 529–534.
Google Scholar | Crossref | Medline | ISI31. Percie, N, Hurst, V, Ahluwalia, A, et al. The ARRIVE guidelines 2.0: updated guidelines for reporting animal research. BMC Vet Res 2020; 16: 242.
Google Scholar | Crossref | Medline32. Ni, R, Rudin, M, Klohs, J. Cortical hypoperfusion and reduced cerebral metabolic rate of oxygen in the arcAβ mouse model of Alzheimer’s disease. Photoacoustics 2018; 10: 38–47.
Google Scholar | Crossref | Medline33. Ni, R, Kindler, DR, Waag, R, et al. FMRI reveals mitigation of cerebrovascular dysfunction by bradykinin receptors 1 and 2 inhibitor noscapine in a mouse model of cerebral amyloidosis. Front Aging Neurosci 2019; 10: 1–14.
Google Scholar34. Kim, S, -G. Quantification of relative cerebral blood flow change by flow‐sensitive alternating inversion recovery (FAIR) technique: Application to functional mapping. Magn Reson Med 1995; 34: 293–301.
Google Scholar | Crossref | Medline | ISI35. Buxton, RB, Frank, LR, Wong, EC, et al. A general kinetic model for quantitative perfusion imaging with arterial spin labeling. Magn Reson Med 1998; 40: 383–396.
Google Scholar | Crossref | Medline | ISI36. Paxinos, G, Franklin, KBJ. Paxinos and Franklin’s the Mouse Brain in Stereotaxic Coordinates. 4th Edn., Cambridge, MA: Academic Press. 2001.
Google Scholar37. Ni, R, Chen, Z, Gerez, JA, et al. Detection of cerebral tauopathy in P301L mice using high-resolution large-field multifocal illumination fluorescence microscopy. Biomed Opt Express 2020; 11: 4989–5002.
Google Scholar | Crossref | Medline38. Massalimova, A, Ni, R, Nitsch, RM, et al. Research Article DTI reveals whole-brain microstructural changes in the P301L mouse model of tauopathy. 2020; 20: 173–184.
Google Scholar39. Goedert, M, Jakes, R, Vanmechelen, E. Monoclonal antibody AT8 recognises tau protein phosphorylated at both serine 202 and threonine 205. Neurosci Lett 1995; 189: 167–170.
Google Scholar | Crossref | Medline | ISI40. Delobel, P, Lavenir, I, Fraser, G, et al. Analysis of tau phosphorylation and truncation in a mouse model of human tauopathy. Am J Pathol 2008; 172: 123–131.
Google Scholar | Crossref | Medline41. Weidensteiner, C, Metzger, F, Bruns, A, et al. Cortical hypoperfusion in the B6.PS2APP mouse model for Alzheimer’s disease: comprehensive phenotyping of vascular and tissular parameters by MRI. Magn Reson Med 2009; 62: 35–45.
Google Scholar | Crossref | Medline42. Massaad, C. a, Amin, SK, Hu, L, et al. Mitochondrial superoxide contributes to blood flow and axonal transport deficits in the Tg2576 mouse model of Alzheimer’s disease. PLoS One 2010; 5: e10561.
Google Scholar | Crossref | Medline | ISI43. Faure, a, Verret, L, Bozon, B, et al. Impaired neurogenesis, neuronal loss, and brain functional deficits in the APPxPS1-Ki mouse model of Alzheimer’s disease. Neurobiol Aging 2011; 32: 407–418.
Google Scholar | Crossref | Medline44. Terwel, D, Lasrado, R, Snauwaert, J, et al. Changed conformation of mutant Tau-P301L underlies the moribund tauopathy, absent in progressive, nonlethal axonopathy of tau-4R/2N transgenic mice. J Biol Chem 2005; 280: 3963–3973.
Google Scholar | Crossref | Medline45. Kobayashi, T, Mori, H, Okuma, Y, et al. Contrasting genotypes of the tau gene in two phenotypically distinct patients with p301L mutation of frontotemporal dementia and parkinsonism linked to chromosome 17. J Neurol 2002; 249: 669–675.
Google Scholar | Crossref | Medline46. Gamache, J, Benzow, K, Forster, C, et al. Factors other than hTau overexpression that contribute to tauopathy-like phenotype in rTg4510 mice. Nat Commun 2019; 10: 2479.
Google Scholar | Crossref | Medline47. Carter, CL, Resnick, EM, Mallampalli, M, et al. Sex and gender differences in Alzheimer’s disease: recommendations for future research. J Womens Health (Larchmt) 2012; 21: 1018–1023.
Google Scholar | Crossref | Medline48. Plassman, BL, Langa, KM, Fisher, GG, et al. Prevalence of dementia in the United States: the aging, demographics, and memory study. Neuroepidemiology 2007; 29: 125–132.

Comments (0)

No login
gif