1. Klohs, J. An integrated view on vascular dysfunction in Alzheimer’s disease. Neurodegener Dis 2019; 19: 109–127.
Google Scholar |
Crossref |
Medline2. Zlokovic, BV. Neurovascular pathways to neurodegeneration in Alzheimer’ s disease and other disorders. Nat Rev Neurosci 2011; 12: 723–738.
Google Scholar |
Crossref |
Medline |
ISI3. Klohs, J, Rudin, M, Shimshek, DR, et al. Imaging of cerebrovascular pathology in animal models of Alzheimer’s disease. Front Aging Neurosci 2014; 6: 32.
Google Scholar |
Crossref |
Medline4. Lasagna-Reeves, CA, Castillo-Carranza, DL, Sengupta, U, et al. Identification of oligomers at early stages of tau aggregation in Alzheimer’ s disease. FASEB J 2012; 26: 1946–1959. doi:10.1096/fj.11-199851.
Google Scholar |
Crossref |
Medline5. Castillo-Carranza, DL, Nilson, AN, Van Skike, CE, et al. Cerebral microvascular accumulation of tau oligomers in Alzheimer’s disease and related tauopathies. Aging Dis 2017; 8: 257–266.
Google Scholar |
Crossref |
Medline6. Merlini, M, Wanner, D, Nitsch, RM. Tau pathology-dependent remodelling of cerebral arteries precedes Alzheimer’s disease-related microvascular cerebral amyloid angiopathy. Acta Neuropathol 2016; 131: 737–752.
Google Scholar |
Crossref |
Medline7. Steketee, RME, Bron, EE, Meijboom, R, et al. Early-stage differentiation between presenile Alzheimer’s disease and frontotemporal dementia using arterial spin labeling MRI. Eur Radiol 2016; 26: 244–253.
Google Scholar |
Crossref |
Medline8. Shimizu, S, Zhang, Y, Laxamana, J, et al. Concordance and discordance between brain perfusion and atrophy in frontotemporal dementia. Brain Imaging Behav 2010; 4: 46–54.
Google Scholar |
Crossref |
Medline9. Zhang, Y, Schuff, N, Ching, C, et al. Joint assessment of structural, perfusion, and diffusion MRI in Alzheimer’s disease and frontotemporal dementia. Int J Alzheimers Dis 2011; 2011: 546871.
Google Scholar |
Medline10. Hu, WT, Wang, Z, Lee, VMY, et al. Distinct cerebral perfusion patterns in FTLD and AD. Neurology 2010; 75: 881–888.
Google Scholar |
Crossref |
Medline |
ISI11. Binnewijzend, MAA, Kuijer, JPA, Van Der Flier, WM, et al. Distinct perfusion patterns in Alzheimer’s disease, frontotemporal dementia and dementia with Lewy bodies. Eur Radiol 2014; 24: 2326–2333.
Google Scholar |
Crossref |
Medline12. Du, AT, Jahng, GH, Hayasaka, S, et al. Hypoperfusion in frontotemporal dementia and Alzheimer disease by arterial spin labeling MRI. Neurology 2006; 67: 1215–1220.
Google Scholar |
Crossref |
Medline |
ISI13. Dopper, EGP, Chalos, V, Ghariq, E, et al. Cerebral blood flow in presymptomatic MAPT and GRN mutation carriers: a longitudinal arterial spin labeling study. NeuroImage Clin 2016; 12: 460–465.
Google Scholar |
Crossref |
Medline14. Götz, J, Ittner, LM. Animal models of Alzheimer’s disease and frontotemporal dementia. Nat Rev Neurosci 2008; 9: 532–544.
Google Scholar |
Crossref |
Medline |
ISI15. Götz, J, Chen, F, Van Dorpe, J, et al. Formation of neurofibrillary tangles in P301L tau transgenic mice induced by Aβ42 fibrils. Science 2001; 293: 1491–1495.
Google Scholar |
Crossref |
Medline |
ISI16. Santacruz, K, Lewis, J, Spires, T, et al. Medicine: Tau suppression in a neurodegenerative mouse model improves memory function. Science 2005; 309: 476–481.
Google Scholar |
Crossref |
Medline |
ISI17. Ramsden, M, Kotilinek, L, Forster, C, et al. Age-dependent neurofibrillary tangle formation, neuron loss, and memory impairment in a mouse model of human tauopathy (P301L). J Neurosci 2005; 25: 10637–10647.
Google Scholar |
Crossref |
Medline |
ISI18. Tatebayashi, Y, Miyasaka, T, Chui, DH, et al. Tau filament formation and associative memory deficit in aged mice expressing mutant (R406W) human tau. Proc Natl Acad Sci USA 2002; 99: 13896–13901.
Google Scholar |
Crossref |
Medline |
ISI19. Dawson, HN, Cantillana, V, Chen, L, et al. The tau N279K exon 10 splicing mutation recapitulates frontotemporal dementia and parkinsonism linked to chromosome 17 tauopathy in a mouse model. J Neurosci 2007; 27: 9155–9168.
Google Scholar |
Crossref |
Medline |
ISI20. Mocanu, MM, Nissen, A, Eckermann, K, et al. The potential for β-structure in the repeat domain of tau protein determines aggregation, synaptic decay, neuronal loss, and coassembly with endogenous tau in inducible mouse models of tauopathy. J Neurosci 2008; 28: 737–748.
Google Scholar |
Crossref |
Medline |
ISI21. Yoshiyama, Y, Higuchi, M, Zhang, B, et al. Synapse loss and microglial activation precede tangles in a P301S tauopathy mouse model. Neuron 2007; 53: 337–351.
Google Scholar |
Crossref |
Medline |
ISI22. Blair, LJ, Frauen, HD, Zhang, B, et al. Tau depletion prevents progressive blood-brain barrier damage in a mouse model of tauopathy. Acta Neuropathol Commun 2015; 3: 8.
Google Scholar |
Crossref |
Medline23. Bennett, RE, Robbins, AB, Hu, M, et al. Tau induces blood vessel abnormalities and angiogenesis-related gene expression in P301L transgenic mice and human Alzheimer’s disease. Proc Natl Acad Sci USA 2018; 115: E1289–E1298.
Google Scholar |
Crossref |
Medline24. Ni, R, Zarb, Y, Kuhn, GA, et al. SWI and phase imaging reveal intracranial calcifications in the P301L mouse model of human tauopathy. MAGMA 2020; 33: 769–781.
Google Scholar |
Crossref |
Medline25. Wells, JA, Holmes, HE, O'Callaghan, JM, et al. Increased cerebral vascular reactivity in the tau expressing rTg4510 mouse: evidence against the role of tau pathology to impair vascular health in Alzheimer’s disease. J Cereb Blood Flow Metab 2015; 35: 359–362.
Google Scholar |
SAGE Journals |
ISI26. Wells, JA, O'Callaghan, JM, Holmes, HE, et al. In vivo imaging of tau pathology using multi-parametric quantitative MRI. Neuroimage 2015; 111: 369–378.
Google Scholar |
Crossref |
Medline27. Park, L, Hochrainer, K, Hattori, Y, et al. Tau induces PSD95–neuronal NOS uncoupling and neurovascular dysfunction independent of neurodegeneration. Nat Neurosci 2020; 23: 1079–1089.
Google Scholar |
Crossref |
Medline28. Govaerts, K, Lechat, B, Struys, T, et al. Longitudinal assessment of cerebral perfusion and vascular response to hypoventilation in a bigenic mouse model of Alzheimer’s disease with amyloid and tau pathology. NMR Biomed 2019; 32: 1–12.
Google Scholar |
Crossref29. Holmes, HE, Colgan, N, Ismail, O, et al. Imaging the accumulation and suppression of tau pathology using multiparametric MRI. Neurobiol Aging 2016; 39: 184–194.
Google Scholar |
Crossref |
Medline30. Götz, J, Chen, F, Barmettler, R, et al. Tau filament formation in transgenic mice expressing P301L tau. J Biol Chem 2001; 276: 529–534.
Google Scholar |
Crossref |
Medline |
ISI31. Percie, N, Hurst, V, Ahluwalia, A, et al. The ARRIVE guidelines 2.0: updated guidelines for reporting animal research. BMC Vet Res 2020; 16: 242.
Google Scholar |
Crossref |
Medline32. Ni, R, Rudin, M, Klohs, J. Cortical hypoperfusion and reduced cerebral metabolic rate of oxygen in the arcAβ mouse model of Alzheimer’s disease. Photoacoustics 2018; 10: 38–47.
Google Scholar |
Crossref |
Medline33. Ni, R, Kindler, DR, Waag, R, et al. FMRI reveals mitigation of cerebrovascular dysfunction by bradykinin receptors 1 and 2 inhibitor noscapine in a mouse model of cerebral amyloidosis. Front Aging Neurosci 2019; 10: 1–14.
Google Scholar34. Kim, S, -G. Quantification of relative cerebral blood flow change by flow‐sensitive alternating inversion recovery (FAIR) technique: Application to functional mapping. Magn Reson Med 1995; 34: 293–301.
Google Scholar |
Crossref |
Medline |
ISI35. Buxton, RB, Frank, LR, Wong, EC, et al. A general kinetic model for quantitative perfusion imaging with arterial spin labeling. Magn Reson Med 1998; 40: 383–396.
Google Scholar |
Crossref |
Medline |
ISI36. Paxinos, G, Franklin, KBJ. Paxinos and Franklin’s the Mouse Brain in Stereotaxic Coordinates. 4th Edn., Cambridge, MA: Academic Press. 2001.
Google Scholar37. Ni, R, Chen, Z, Gerez, JA, et al. Detection of cerebral tauopathy in P301L mice using high-resolution large-field multifocal illumination fluorescence microscopy. Biomed Opt Express 2020; 11: 4989–5002.
Google Scholar |
Crossref |
Medline38. Massalimova, A, Ni, R, Nitsch, RM, et al. Research Article DTI reveals whole-brain microstructural changes in the P301L mouse model of tauopathy. 2020; 20: 173–184.
Google Scholar39. Goedert, M, Jakes, R, Vanmechelen, E. Monoclonal antibody AT8 recognises tau protein phosphorylated at both serine 202 and threonine 205. Neurosci Lett 1995; 189: 167–170.
Google Scholar |
Crossref |
Medline |
ISI40. Delobel, P, Lavenir, I, Fraser, G, et al. Analysis of tau phosphorylation and truncation in a mouse model of human tauopathy. Am J Pathol 2008; 172: 123–131.
Google Scholar |
Crossref |
Medline41. Weidensteiner, C, Metzger, F, Bruns, A, et al. Cortical hypoperfusion in the B6.PS2APP mouse model for Alzheimer’s disease: comprehensive phenotyping of vascular and tissular parameters by MRI. Magn Reson Med 2009; 62: 35–45.
Google Scholar |
Crossref |
Medline42. Massaad, C. a, Amin, SK, Hu, L, et al. Mitochondrial superoxide contributes to blood flow and axonal transport deficits in the Tg2576 mouse model of Alzheimer’s disease. PLoS One 2010; 5: e10561.
Google Scholar |
Crossref |
Medline |
ISI43. Faure, a, Verret, L, Bozon, B, et al. Impaired neurogenesis, neuronal loss, and brain functional deficits in the APPxPS1-Ki mouse model of Alzheimer’s disease. Neurobiol Aging 2011; 32: 407–418.
Google Scholar |
Crossref |
Medline44. Terwel, D, Lasrado, R, Snauwaert, J, et al. Changed conformation of mutant Tau-P301L underlies the moribund tauopathy, absent in progressive, nonlethal axonopathy of tau-4R/2N transgenic mice. J Biol Chem 2005; 280: 3963–3973.
Google Scholar |
Crossref |
Medline45. Kobayashi, T, Mori, H, Okuma, Y, et al. Contrasting genotypes of the tau gene in two phenotypically distinct patients with p301L mutation of frontotemporal dementia and parkinsonism linked to chromosome 17. J Neurol 2002; 249: 669–675.
Google Scholar |
Crossref |
Medline46. Gamache, J, Benzow, K, Forster, C, et al. Factors other than hTau overexpression that contribute to tauopathy-like phenotype in rTg4510 mice. Nat Commun 2019; 10: 2479.
Google Scholar |
Crossref |
Medline47. Carter, CL, Resnick, EM, Mallampalli, M, et al. Sex and gender differences in Alzheimer’s disease: recommendations for future research. J Womens Health (Larchmt) 2012; 21: 1018–1023.
Google Scholar |
Crossref |
Medline48. Plassman, BL, Langa, KM, Fisher, GG, et al. Prevalence of dementia in the United States: the aging, demographics, and memory study. Neuroepidemiology 2007; 29: 125–132.
Comments (0)