Tissue-type plasminogen activator induces TNF-α-mediated preconditioning of the blood-brain barrier

1. Gidday, JM. Cerebral preconditioning and ischaemic tolerance. Nat Rev Neurosci 2006; 7: 437–448.
Google Scholar | Crossref | Medline | ISI2. Schurr, A, Reid, KH, Tseng, MT, et al. Adaptation of adult brain tissue to anoxia and hypoxia in vitro. Brain Res 1986; 374: 244–248.
Google Scholar | Crossref | Medline | ISI3. Perez-Pinzon, MA, Xu, GP, Dietrich, WD, et al. Rapid preconditioning protects rats against ischemic neuronal damage after 3 but not 7 days of reperfusion following global cerebral ischemia. J Cereb Blood Flow Metab 1997; 17: 175–182.
Google Scholar | SAGE Journals | ISI4. Cadet, JL, Krasnova, IN. Cellular and molecular neurobiology of brain preconditioning. Mol Neurobiol 2009; 39: 50–61.
Google Scholar | Crossref | Medline | ISI5. Dirnagl, U, Becker, K, Meisel, A. Preconditioning and tolerance against cerebral ischaemia: from experimental strategies to clinical use. Lancet Neurol 2009; 8: 398–412.
Google Scholar | Crossref | Medline | ISI6. Trendelenburg, G, Dirnagl, U. Neuroprotective role of astrocytes in cerebral ischemia: focus on ischemic preconditioning. Glia 2005; 50: 307–320.
Google Scholar | Crossref | Medline | ISI7. Hirayama, Y, Ikeda-Matsuo, Y, Notomi, S, et al. Astrocyte-mediated ischemic tolerance. J Neurosci 2015; 35: 3794–3805.
Google Scholar | Crossref | Medline8. Morizawa, YM, Hirayama, Y, Ohno, N, et al. Reactive astrocytes function as phagocytes after brain ischemia via ABCA1-mediated pathway. Nat Commun 2017; 8: 28.
Google Scholar | Crossref | Medline9. Romera, C, Hurtado, O, Botella, SH, et al. In vitro ischemic tolerance involves upregulation of glutamate transport partly mediated by the TACE/ADAM17-tumor necrosis factor-alpha pathway. J Neurosci 2004; 24: 1350–1357.
Google Scholar | Crossref | Medline | ISI10. Ruscher, K, Freyer, D, Karsch, M, et al. Erythropoietin is a paracrine mediator of ischemic tolerance in the brain: evidence from an in vitro model. J Neurosci 2002; 22: 10291–10301.
Google Scholar | Crossref | Medline | ISI11. Masada, T, Hua, Y, Xi, G, et al. Attenuation of ischemic brain edema and cerebrovascular injury after ischemic preconditioning in the rat. J Cereb Blood Flow Metab 2001; 21: 22–33.
Google Scholar | SAGE Journals | ISI12. Collen, D. The plasminogen (fibrinolytic) system. Thromb Haemost 1999; 82: 259–270.
Google Scholar | Crossref | Medline | ISI13. Qian, Z, Gilbert, ME, Colicos, MA, et al. Tissue-plasminogen activator is induced as an immediate-early gene during seizure, kindling and long-term potentiation. Nature 1993; 361: 453–457.
Google Scholar | Crossref | Medline | ISI14. Zhang, C, An, J, Haile, W, et al. Microglial low-density lipoprotein receptor-related protein 1 mediates the effect of tissue-type plasminogen activator on matrix metalloproteinase-9 activity in the ischemic brain. J Cereb Blood Flow Metab 2009; 29: 1946–1954.
Google Scholar | SAGE Journals | ISI15. Yepes, M, Sandkvist, M, Moore, E, et al. Tissue-type plasminogen activator induces opening of the blood-brain barrier via the LDL receptor-related protein. J Clin Invest 2003; 112: 1533–1540.
Google Scholar | Crossref | Medline | ISI16. Polavarapu, R, Gongora, M, Yi, H, et al. Tissue-type plasminogen activator-mediated shedding of astrocytic low-density lipoprotein receptor-related protein increases the permeability of the neurovascular unit. Blood 2007; 109: 3270–3278.
Google Scholar | Crossref | Medline | ISI17. Polavarapu, R, Gongora, MC, Winkles, JA, et al. Tumor necrosis factor-like weak inducer of apoptosis increases the permeability of the neurovascular unit through nuclear factor-kappaB pathway activation. J Neurosci 2005; 25: 10094–10100.
Google Scholar | Crossref | Medline | ISI18. Haile, WB, Wu, J, Echeverry, R, et al. Tissue-type plasminogen activator has a neuroprotective effect in the ischemic brain mediated by neuronal TNF-alpha. J Cereb Blood Flow Metab 2012; 32: 57–69.
Google Scholar | SAGE Journals | ISI19. Abbott, NJ, Ronnback, L, Hansson, E. Astrocyte-endothelial interactions at the blood-brain barrier. NatRev Neurosci 2006; 7: 41–53.
Google Scholar | Crossref | Medline | ISI20. Percie Du Sert, N, Hurst, V, Ahluwalia, A, et al. The ARRIVE guidelines 2.0: updated guidelines for reporting animal research. J Cereb Blood Flow Metab 2020; 40: 1769–1777.
Google Scholar | SAGE Journals | ISI21. Kobsar, I, Berghoff, M, Samsam, M, et al. Preserved myelin integrity and reduced axonopathy in connexin32-deficient mice lacking the recombination activating gene-1. Brain 2003; 126: 804–813.
Google Scholar | Crossref | Medline22. Diaz, A, Merino, P, Manrique, LG, et al. Urokinase-type plasminogen activator (uPA) protects the tripartite synapse in the ischemic brain via ezrin-mediated formation of peripheral astrocytic processes. J Cererb Blood Flow Metab 2019; 39: 2157–2171.
Google Scholar23. Echeverry, R, Wu, J, Haile, W, et al. Tissue-type plasminogen activator is a neuroprotectant in the mouse hippocampus. J Clin Invest 2010; 120: 2194–2205.
Google Scholar | Crossref | Medline | ISI24. Swanson, RA, Morton, MT, Tsao-Wu, G, et al. A semiautomated method for measuring brain infarct volume. J Cereb Blood Flow Metab 1990; 10: 290–293.
Google Scholar | SAGE Journals | ISI25. Haile, WB, Echeverry, R, Wu, J, et al. The interaction between tumor necrosis factor-like weak inducer of apoptosis and its receptor fibroblast growth factor-inducible 14 promotes the recruitment of neutrophils into the ischemic brain. J Cereb Blood Flow Metab 2010; 30: 1147–1156.
Google Scholar | SAGE Journals | ISI26. Paxinos, G, Franklin, KBJ. The mouse brain in stereotaxic coordinates. San Diego, CA: Academic Press Inc., 2001, pp.1–93.
Google Scholar27. Hacke, W, Kaste, M, Bluhmki, E, et al. Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke. N Engl J Med 2008; 359: 1317–1329.
Google Scholar | Crossref | Medline | ISI28. The National Institute of Neurological Disorders Stroke Study Group. Tissue plasminogen activator for acute ischemic stroke. N Engl J Med 1995; 333: 1581–1587.
Google Scholar | Crossref | Medline29. Ginis, I, Jaiswal, R, Klimanis, D, et al. TNF-alpha-induced tolerance to ischemic injury involves differential control of NF-kappaB transactivation: the role of NF-kappaB association with p300 adaptor. J Cereb Blood Flow Metab 2002; 22: 142–152.
Google Scholar | SAGE Journals | ISI30. Hirt, L, Ternon, B, Price, M, et al. Protective role of early aquaporin 4 induction against postischemic edema formation. J Cereb Blood Flow Metab 2009; 29: 423–433.
Google Scholar | SAGE Journals | ISI31. Ciappelloni, S, Bouchet, D, Dubourdieu, N, et al. Aquaporin-4 surface trafficking regulates astrocytic process motility and synaptic activity in health and autoimmune disease. Cell Rep 2019; 27: 3860–3872.
Google Scholar | Crossref | Medline32. Michinaga, S, Koyama, Y. Dual roles of astrocyte-derived factors in regulation of blood-brain barrier function after brain damage. Ijms 2019; 20: 571.
Google Scholar | Crossref33. Bouchaud, C, Le Bert, M, Dupouey, P. Are close contacts between astrocytes and endothelial cells a prerequisite condition of a blood-brain barrier? The rat subfornical organ as an example. Biol Cell 1989; 67: 159–165.
Google Scholar | Medline34. Pennica, D, Holmes, WE, Kohr, WJ, et al. Cloning and expression of human tissue-type plasminogen-activator CDNA in Escherichia coli. Nature 1983; 301: 214–221.
Google Scholar | Crossref | Medline | ISI35. Emeis, JJ, Eijnden-Schrauwen, Y, van den Hoogen, CM, et al. An endothelial storage granule for tissue-type plasminogen activator. J Cell Biol 1997; 139: 245–256.
Google Scholar | Crossref | Medline | ISI36. van Zonneveld, AJ, Veerman, H, Pannekoek, H. Autonomous functions of structural domains on human tissue-type plasminogen activator. Proc Natl Acad Sci U S A 1986; 83: 4670–4674.
Google Scholar | Crossref | Medline37. Lijnen, HR, Collen, D. Interaction of plasminogen activators and inhibitors with plasminogen and fibrin. Semin Thromb Hemost 1982; 8: 2–10.
Google Scholar | Crossref | Medline | ISI38. Sappino, AP, Madani, R, Huarte, J, et al. Extracellular proteolysis in the adult murine brain. J Clin Invest 1993; 92: 679–685.
Google Scholar | Crossref | Medline | ISI39. Wang, YF, Tsirka, SE, Strickland, S, et al. Tissue plasminogen activator (tPA) increases neuronal damage after focal cerebral ischemia in wild-type and tPA-deficient mice. Nat Med 1998; 4: 228–231.
Google Scholar | Crossref | Medline | ISI40. Yepes, M, Roussel, B, Ali, C, et al. Tissue-type plasminogen activator in the ischemic brain: more than a thrombolytic. Trends Neurosci 2009; 32: 48–55.
Google Scholar | Crossref | Medline | ISI41. Jeanneret, V, Wu, F, Merino, P, et al. Tissue-type plasminogen activator (tPA) modulates the postsynaptic response of cerebral cortical neurons to the presynaptic release of glutamate. Front Mol Neurosci 2016; 9: 121.
Google Scholar | Crossref | Medline42. Murry, CE, Jennings, RB, Reimer, KA. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 1986; 74: 1124–1136.
Google Scholar | Crossref | Medline | ISI43. Kitagawa, K, Matsumoto, M, Kuwabara, K, et al. Ischemic tolerance' phenomenon detected in various brain regions. Brain Res 1991; 561: 203–211.
Google Scholar | Crossref | Medline | ISI44. Zimmermann, C, Ginis, I, Furuya, K, et al. Lipopolysaccharide-induced ischemic tolerance is associated with increased levels of ceramide in brain and in plasma. Brain Res 2001; 895: 59–65.
Google Scholar | Crossref | Medline | ISI45. Chopp, M, Chen, H, Ho, KL, et al. Transient hyperthermia protects against subsequent forebrain ischemic cell damage in the rat. Neurology 1989; 39: 1396–1398.
Google Scholar | Crossref | Medline | ISI46. Kobayashi, S, Harris, VA, Welsh, FA. Spreading depression induces tolerance of cortical neurons to ischemia in rat brain. J Cereb Blood Flow Metab 1995; 15: 721–727.
Google Scholar | SAGE Journals | ISI47. Wegener, S, Gottschalk, B, Jovanovic, V, et al.; MRI in Acute Stroke Study Group of the German Competence Network Stroke. Transient ischemic attacks before ischemic stroke: preconditioning the human brain? A multicenter magnetic resonance imaging study. Stroke 2004; 35: 616–621.
Google Scholar | Crossref |

Comments (0)

No login
gif