1. Jiang, X, Andjelkovic, AV, Zhu, L, et al. Blood-brain barrier dysfunction and recovery after ischemic stroke. Prog Neurobiol 2018; 163–164: 144–171.
Google Scholar |
Crossref |
Medline2. Campbell, BC, De Silva, DA, Macleod, MR, et al. Ischaemic stroke. Nat Rev Dis Primers 2019; 5: 1–22.
Google Scholar |
Crossref |
Medline3. Dostovic, Z, Dostovic, E, Smajlovic, D, et al. Brain edema after ischaemic stroke. Med Arch 2016; 70: 339–341.
Google Scholar |
Crossref |
Medline4. Thorén, M, Azevedo, E, Dawson, J, et al. Predictors for cerebral edema in acute ischemic stroke treated with intravenous thrombolysis. Stroke 2017; 48: 2464–2471.
Google Scholar |
Crossref |
Medline5. Liu, J, Wang, Y, Akamatsu, Y, et al. Vascular remodeling after ischemic stroke: mechanisms and therapeutic potentials. Prog Neurobiol 2014; 115: 138–156.
Google Scholar |
Crossref |
Medline |
ISI6. Kang, M, Jin, S, Lee, D, et al. MRI visualization of whole brain macro-and microvascular remodeling in a rat model of ischemic stroke: a pilot study. Sci Rep 2020; 10: 1–12.
Google Scholar |
Crossref |
Medline7. Dhar, R, Yuan, K, Kulik, T, et al. CSF volumetric analysis for quantification of cerebral edema after hemispheric infarction. Neurocrit Care 2016; 24: 420–427.
Google Scholar |
Crossref |
Medline |
ISI8. Dhar, R, Chen, Y, Hamzehloo, A, et al. Reduction in cerebrospinal fluid volume as an early quantitative biomarker of cerebral edema after ischemic stroke. Stroke 2020; 51: 462–467.
Google Scholar |
Crossref |
Medline9. Mestre, H, Du, T, Sweeney, AM, et al. Cerebrospinal fluid influx drives acute ischemic tissue swelling. Science 2020; 367
Google Scholar |
Crossref |
Medline10. Tipirneni-Sajja, A, Christensen, S, Straka, M, et al. Prediction of final infarct volume on subacute MRI by quantifying cerebral edema in ischemic stroke. J Cereb Blood Flow Metab 2017; 37: 3077–3084.
Google Scholar |
SAGE Journals |
ISI11. Gaberel, T, Gakuba, C, Goulay, R, et al. Impaired glymphatic perfusion after strokes revealed by contrast-enhanced MRI: a new target for fibrinolysis? Stroke 2014; 45: 3092–3096.
Google Scholar |
Crossref |
Medline12. Lansberg, MG, O'Brien, MW, Tong, DC, et al. Evolution of cerebral infarct volume assessed by diffusion-weighted magnetic resonance imaging. Arch Neurol 2001; 58: 613–617.
Google Scholar |
Crossref |
Medline13. Kanekar, SG, Zacharia, T, Roller, R. Imaging of stroke: part 2, pathophysiology at the molecular and cellular levels and corresponding imaging changes. AJR Am J Roentgenol 2012; 198: 63–74.
Google Scholar |
Crossref |
Medline |
ISI14. Korbecki, A, Zimny, A, Podgórski, P, et al. Imaging of cerebrospinal fluid flow: fundamentals, techniques, and clinical applications of phase-contrast magnetic resonance imaging. Pol J Radiol 2019; 84: e240–e250.
Google Scholar |
Crossref |
Medline15. König, RE, Stucht, D, Baecke, S, et al. Phase‐contrast MRI detection of ventricular shunt CSF flow: proof of principle. J Neuroimaging 2020; 30: 746–753.
Google Scholar |
Crossref |
Medline16. Stadlbauer, A, Salomonowitz, E, Brenneis, C, et al. Magnetic resonance velocity mapping of 3D cerebrospinal fluid flow dynamics in hydrocephalus: preliminary results. Eur Radiol 2012; 22: 232–242.
Google Scholar |
Crossref |
Medline17. Le Bihan, D. What can we see with IVIM MRI? NeuroImage 2019; 187: 56–67.
Google Scholar |
Crossref |
Medline18. Harrison, IF, Siow, B, Akilo, AB, et al. Non-invasive imaging of CSF-mediated brain clearance pathways via assessment of perivascular fluid movement with diffusion tensor MRI. eLife 2018; 7: e34028.
Google Scholar |
Crossref |
Medline19. Wells, J, Thomas, D, Saga, T, et al. MRI of cerebral micro-vascular flow patterns: a multi-direction diffusion-weighted ASL approach. J Cereb Blood Flow Metab 2017; 37: 2076–2083.
Google Scholar |
SAGE Journals |
ISI20. Becker, AS, Boss, A, Klarhoefer, M, et al. Investigation of the pulsatility of cerebrospinal fluid using cardiac-gated intravoxel incoherent motion imaging. NeuroImage 2018; 169: 126–133.
Google Scholar |
Crossref |
Medline21. Streitbürger, DP, Möller, HE, Tittgemeyer, M, et al. Investigating structural brain changes of dehydration using voxel-based morphometry. PLoS One 2012; 7: e44195.
Google Scholar |
Crossref |
Medline22. Bader, C, Cyrille, C, Jadwiga, Z, et al. Estimation of the lateral ventricles volumes from a 2D image and its relationship with cerebrospinal fluid flow. BioMed Res Int 2013; 2013: 215989.
Google Scholar |
Crossref |
Medline23. Przyborowska, P, Adamiak, Z, Zhalniarovich, Y. Quantification of cerebral lateral ventricular volume in cats by low-and high-field MRI. J Feline Med Surg 2017; 19: 1080–1086.
Google Scholar |
SAGE Journals |
ISI24. Lin, MP, Liebeskind, DS. Imaging of ischemic stroke. Continuum (Minneap Minn) 2016; 22: 1399–1423.
Google Scholar |
Medline25. Percie Du Sert, N, Hurst, V, Ahluwalia, A, et al. The ARRIVE guidelines 2.0: updated guidelines for reporting animal research. J Cereb Blood Flow Metab 2020; 40: 1769–1777.
Google Scholar |
SAGE Journals |
ISI26. Hennig, J, Nauerth, A, Friedburg, H. RARE imaging: a fast imaging method for clinical MR. Magn Reson Med 1986; 3: 823–833.
Google Scholar |
Crossref |
Medline |
ISI27. Hazel, R, McCormack, E, Miller, J, et al. Measurement of cerebrospinal fluid flow in the aqueduct of a rat model of hydrocephalus. Proc Intl Soc Mag Reson Med 2006; 14: 30.
Google Scholar28. Naish, JH, Baldwin, RC, Patankar, T, et al. Abnormalities of CSF flow patterns in the cerebral aqueduct in treatment‐resistant late‐life depression: a potential biomarker of microvascular angiopathy. Magn Reson Med 2006; 56: 509–516.
Google Scholar |
Crossref |
Medline29. Kurtcuoglu, V, Soellinger, M, Summers, P, et al. Computational investigation of subject-specific cerebrospinal fluid flow in the third ventricle and aqueduct of sylvius. J Biomech 2007; 40: 1235–1245.
Google Scholar |
Crossref |
Medline |
ISI30. Szafer, A, Zhong, J, Gore, JC. Theoretical model for water diffusion in tissues. Magn Reson Med 1995; 33: 697–712.
Google Scholar |
Crossref |
Medline |
ISI31. Deruelle, T, Kober, F, Perles-Barbacaru, A, et al. A multicenter preclinical MRI study: Definition of rat brain relaxometry reference maps. Front Neuroinform 2020; 14: 22.
Google Scholar |
Crossref |
Medline32. Schlaug, G, Siewert, B, Benfield, A, et al. Time course of the apparent diffusion coefficient (ADC) abnormality in human stroke. Neurology 1997; 49: 113–119.
Google Scholar |
Crossref |
Medline |
ISI33. Cho, H, Ren, XH, Sigmund, EE, et al. A single-scan method for measuring flow along an arbitrary direction. J Magn Reson 2007; 186: 11–16.
Google Scholar |
Crossref |
Medline34. Faubel, R, Westendorf, C, Bodenschatz, E, et al. Cilia-based flow network in the brain ventricles. Science 2016; 353: 176–178.
Google Scholar |
Crossref |
Medline35. Eichele, G, Bodenschatz, E, Ditte, Z, et al. Cilia-driven flows in the brain third ventricle. Philos Trans R Soc Lond B Biol Sci 2020; 375: 20190154.
Google Scholar |
Crossref |
Medline36. Magdoom, KN, Brown, A, Rey, J, et al. MRI of whole rat brain perivascular network reveals role for ventricles in brain waste clearance. Sci Rep 2019; 9: 1–11.
Google Scholar |
Crossref |
Medline37. Mozumder, M, Beltrachini, L, Collier, Q, et al. Simultaneous magnetic resonance diffusion and pseudo‐diffusion tensor imaging. Magn Reson Med 2018; 79: 2367–2378.
Google Scholar |
Crossref |
Medline38. Dalla Corte, A, de Souza, CF, Anés, M, et al. Correlation of CSF flow using phase-contrast MRI with ventriculomegaly and CSF opening pressure in mucopolysaccharidoses. Fluids Barriers CNS 2017; 14: 1–12.
Google Scholar |
Medline39. Chiang, WW, Takoudis, CG, Lee, SH, et al. Relationship between ventricular morphology and aqueductal cerebrospinal fluid flow in healthy and communicating hydrocephalus. Invest Radiol 2009; 44: 192–199.
Google Scholar |
Crossref |
Medline40. Bradley, WG. CSF flow in the brain in the context of normal pressure hydrocephalus. AJNR Am J Neuroradiol 2015; 36: 831–838.
Google Scholar |
Crossref |
Medline41. Greitz D. Radiological assessment of hydrocephalus: new theories and implications for therapy. Neurosurg Rev 2004; 27: 145–165.
Google Scholar42. Kempski, O. Cerebral edema. Semin. Nephrol. Elsevier 2001; 21: 303–307.
Google Scholar |
Crossref |
Medline43. Mahajan, S, Bhagat, H. Cerebral oedema: Pathophysiological mechanisms and experimental therapies. J Neurosurg Anesthesiol 2016; 03: S22–S28.
Google Scholar44. Keep, R, Andjelkovic, A, Xi, G, et al. Cytotoxic and vasogenic brain edema. In: Caplan, LR, Biller, J, Leary, MC (eds) Primer on cerebrovascular diseases. Amsterdam: Elsevier, 2017. pp.145–149.
Google Scholar |
Crossref45. Rosenblum, WI. Cytotoxic edema: monitoring its magnitude and contribution to brain swelling. J Neuropathol Exp Neurol 2007; 66: 771–778.
Google Scholar |
Crossref |
Medline46. Nehring, SM, Tadi, P, Tenny, S. Cerebral edema. [updated 2021 jul 8]. In: StatPearls [internet]. Treasure Island (FL): StatPearls Publishing; 2021.
Google Scholar47. Zhou, X, Li, Y, Lenahan, C, et al. Glymphatic system in the central nervous system, a novel therapeutic direction against brain edema after stroke. Front Aging Neurosci 2021; 13: 478.
Google Scholar |
Crossref48. Reulen, HJ. Vasogenic brain oedema: new aspects in its formation, resolution and therapy. Br J Anaesth 1976; 48: 741–752.
Google Scholar |
Crossref |
Medline |
ISI49. Johanson, C, Stopa, E, Baird, A, et al. Traumatic brain injury and recovery mechanisms: peptide modulation of periventricular neurogenic regions by the choroid plexus–CSF nexus. J Neural Transm (Vienna) 2011; 118: 115–133.
Google Scholar |
Crossref |
Medline50. Podvin, S, Gonzalez, AM, Miller, MC, et al. Esophageal cancer related gene-4 is a choroid plexus-derived injury response gene: evidence for a biphasic response in early and late brain injury. PLoS One 2011; 6: e24609.
Google Scholar |
Crossref |
Medline51. Li, Y, Chen, J, Chopp, M. Cell proliferation and differentiation from ependymal, subependymal and choroid plexus cells in response to stroke in rats. J Neurol Sci 2002; 193: 137–146.
Google Scholar |
Crossref |
Medline |
ISI52. Xiang, J, Routhe, LJ, Wilkinson, DA, et al. The choroid plexus as a site of damage in hemorrhagic and ischemic stroke and its role in responding to injury. Fl
Comments (0)