Lower cerebral oxygen utilization is associated with Alzheimer’s disease-related neurodegeneration and poorer cognitive performance among apolipoprotein E ε4 carriers

1. Peng SL, Dumas JA, Park DC, et al. Age-related increase of resting metabolic rate in the human brain. NeuroImage 2014; 98: 176–183.
Google Scholar2. Thomas, BP, Sheng, M, Tseng, BY, et al. Reduced global brain metabolism but maintained vascular function in amnestic mild cognitive impairment. J Cereb Blood Flow Metab 2017; 37: 1508–1516.
Google Scholar | SAGE Journals | ISI3. Lin, Z, Sur, S, Soldan, A, et al. Brain oxygen extraction by using MRI in older individuals: relationship to apolipoprotein e genotype and amyloid burden. Radiology 2019; 292: 140–148.
Google Scholar | Crossref | Medline4. Aanerud, J, Borghammer, P, Chakravarty, MM, et al. Brain energy metabolism and blood flow differences in healthy aging. J Cereb Blood Flow Metab 2012; 32: 1177–1187.
Google Scholar | SAGE Journals | ISI5. Catchlove, SJ, Macpherson, H, Hughes, ME, et al. An investigation of cerebral oxygen utilization, blood flow and cognition in healthy aging. PLoS ONE 2018; 13: e0197055–21.
Google Scholar | Crossref | Medline6. Jiang D, Lin Z, Liu P, et al. Brain oxygen extraction is differentially altered by Alzheimer’s and vascular diseases. J Magn Resonan Imaging 2020; 52: 1829–1837.
Google Scholar7. Kljajevic, V, Grothe, MJ, Ewers, M, et al.; Alzheimer's Disease Neuroimaging Initiative , Distinct pattern of hypometabolism and atrophy in preclinical and predementia Alzheimer's disease. Neurobiol Aging 2014; 35: 1973–1981.
Google Scholar | Crossref | Medline | ISI8. Wei Z, Xu J, Chen L, et al. Brain metabolism in tau and amyloid mouse models of Alzheimer’s disease: an MRI study. NMR Biomed 2021; 34: e4568.
Google Scholar9. Tohgi, H, Yonezawa, H, Takahashi, S, et al. Cerebral blood flow and oxygen metabolism in senile dementia of Alzheimer's type and vascular dementia with deep white matter changes. Neuroradiology 1998; 40: 131–137.
Google Scholar | Crossref | Medline | ISI10. Frackowiak, RSJ, Pozzilli, C, Legg, NJ, et al. Regional cerebral oxygen supply and utilization in dementia: a clinical and physiological study with oxygen-15 and positron tomography a clinical and physiological study with oxygen - 15 and positron tomohraphy. Brain 1981; 104: 753–778.
Google Scholar | Crossref | Medline | ISI11. Ishii, K, Kitagaki, H, Kono, M, et al. Decreased medial temporal oxygen metabolism in Alzheimer's disease shown by PET. J Nucl Med 1996; 37: 1159–1165.
Google Scholar | Medline | ISI12. Østergaard, L, Aamand, R, Gutiérrez-Jiménez, E, et al. The capillary dysfunction hypothesis of Alzheimer's disease. Neurobiol Aging 2013; 34: 1018–1031.
Google Scholar | Crossref | Medline | ISI13. Raber, J, Huang, Y, Ashford, JW. ApoE genotype accounts for the vast majority of AD risk and AD pathology. Neurobiol Aging 2004; 25: 641–650.
Google Scholar | Crossref | Medline | ISI14. Montagne, A, Nation, DA, Sagare, AP, et al. APOE4 leads to blood–brain barrier dysfunction predicting cognitive decline. Nature 2020; 581: 71–76.
Google Scholar | Crossref | Medline15. Jespersen, SN, Østergaard, L. The roles of cerebral blood flow, capillary transit time heterogeneity, and oxygen tension in brain oxygenation and metabolism. J Cereb Blood Flow Metab 2012; 32: 264–277.
Google Scholar | SAGE Journals | ISI16. Mosconi, L. Brain metabolic decreases related to the dose of the ApoE e4 allele in Alzheimer's disease. J Neurol, Neurosurg Psychiatr 2004; 75: 370–376.
Google Scholar | Crossref | Medline17. Reiman, EM, Caselli, RJ, Yun, LS, et al. Preclinical evidence of Alzheimer's disease in persons homozygous for the ε4 allele for apolipoprotein E. N Engl J Med 1996; 334: 752–758.
Google Scholar | Crossref | Medline | ISI18. Didic, M, Felician, O, Gour, N, et al. Rhinal hypometabolism on FDG PET in healthy APO-E4 carriers: impact on memory function and metabolic networks. Eur J Nucl Med Mol Imaging 2015; 42: 1512–1521.
Google Scholar | Crossref | Medline19. Schwarz, CG, Gunter, JL, Wiste, HJ, et al.; Alzheimer's Disease Neuroimaging Initiative. A large-scale comparison of cortical thickness and volume methods for measuring Alzheimer's disease severity. Neuroimage Clin 2016; 11: 802–812.
Google Scholar | Crossref | Medline20. Moore, EE, Gifford, KA, Khan, OA, et al. Cerebrospinal fluid biomarkers of neurodegeneration, synaptic dysfunction, and axonal injury relate to atrophy in structural brain regions specific to Alzheimer's disease. Alzheimer's & Dementia 2020; 16: 883–895.
Google Scholar | Crossref | Medline21. Jefferson, AL, Gifford, KA, Acosta, LMY, et al. The Vanderbilt memory & aging project: study design and baseline cohort overview. Jad 2016; 52: 539–559.
Google Scholar | Crossref22. Kresge, HA, Khan, OA, Wagener, MA, et al. Subclinical compromise in cardiac strain relates to lower cognitive performances in older adults. Jaha 2018; 7: e007562.
Google Scholar | Crossref23. Asman, AJ, Landman, BA. Non-local statistical label fusion for multi-atlas segmentation. Med Image Anal 2013; 17: 194–208.
Google Scholar | Crossref | Medline24. Harrigan, RL, Yvernault, BC, Boyd, BD, et al. Vanderbilt university institute of imaging science center for computational imaging XNAT: a multimodal data archive and processing environment. NeuroImage 2016; 124: 1097–1101.
Google Scholar | Crossref | Medline25. Jefferson, AL, Cambronero, FE, Liu, D, et al. Higher aortic stiffness is related to lower cerebral blood flow and preserved cerebrovascular reactivity in older adults. Circulation 2018; 138: 1951–1962.
Google Scholar | Crossref | Medline26. Fischl, B, Dale, AM. Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc Natl Acad Sci U S A 2000; 97: 11050–11055.
Google Scholar | Crossref | Medline | ISI27. Jenkinson, M, Smith, S. A global optimisation method for robust affine registration of brain images. Med Image Anal 2001; 5: 143–156.
Google Scholar | Crossref | Medline | ISI28. Alsop, DC, Detre, JA, Golay, X, et al. Recommended implementation of arterial spin-labeled perfusion MRI for clinical applications: a consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia. Magn Reson Med 2015; 73: 102–116.
Google Scholar | Crossref | Medline | ISI29. Jenkinson, M, Beckmann, CF, Behrens, TEJ, et al. FSL. NeuroImage 2012; 62: 782–790.
Google Scholar | Crossref | Medline | ISI30. Lu, H, Ge, Y. Quantitative evaluation of oxygenation in venous vessels using T2-relaxation-under-spin-tagging MRI. Magn Reson Med 2008; 60: 357–363.
Google Scholar | Crossref | Medline | ISI31. Lu, H, Xu, F, Grgac, K, et al. Calibration and validation of TRUST MRI for the estimation of cerebral blood oxygenation. Magn Reson Med 2012; 67: 42–49.
Google Scholar | Crossref | Medline | ISI32. Liu, P, Xu, F, Lu, H. Test-retest reproducibility of a rapid method to measure brain oxygen metabolism. Magn Reson Med 2013; 69: 675–681.
Google Scholar | Crossref | Medline | ISI33. Kety, SS, Schmidt, CF. The nitrous oxide method for the quantitative determination of cerebral blood flow in man: theory, procedure and normal values 1. J Clin Invest 1948; 27: 476–483.
Google Scholar | Crossref | Medline | ISI34. Guyton, AC, Hall, JE. Textbook of medical physiology. 11th ed. Philadelphia: Saunders/Elsevier, 2005, p.1116.
Google Scholar35. D'Agostino, RB, Wolf, PA, Belanger, AJ, et al. Stroke risk profile: adjustment for antihypertensive medication. The Framingham study. Stroke 1994; 25: 40–43.
Google Scholar | Crossref | Medline | ISI36. Morris, JC. The clinical dementia rating (CDR). Neurology 1993; 43: 2412–2414.
Google Scholar | Crossref | Medline | ISI37. Benjamini, Y, Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B (Methodological) 1995; 57: 289–300.
Google Scholar | Crossref38. Schoemaker, D, Buss, C, Pietrantonio, S, et al. The hippocampal-to-ventricle ratio (HVR): presentation of a manual segmentation protocol and preliminary evidence. NeuroImage 2019; 203: 116108.
Google Scholar | Crossref | Medline39. Perkins, M, Wolf, AB, Chavira, B, et al. Altered energy metabolism pathways in the posterior cingulate in young adult apolipoprotein E ɛ4 carriers. J Alzheimers Dis 2016; 53: 95–106.
Google Scholar | Crossref | Medline40. Wu, L, Zhang, X, Zhao, L. Human ApoE isoforms differentially modulate brain glucose and ketone body metabolism: Implications for Alzheimer's disease risk reduction and early intervention. J Neurosci 2018; 38: 6665–6681.
Google Scholar | Crossref | Medline41. Area-Gomez, E, Larrea, D, Pera, M, et al. APOE4 is associated with differential regional vulnerability to bioenergetic deficits in aged APOE mice. Sci Rep 2020; 10.
Google Scholar | Crossref | Medline42. Schönfeld, P, Reiser, G. Why does brain metabolism not favor burning of fatty acids to provide energy? Reflections on disadvantages of the use of free fatty acids as fuel for brain. J Cereb Blood Flow Metab 2013; 33: 1493–1499.
Google Scholar | SAGE Journals | ISI43. Hoyer, S. Oxidative energy metabolism in Alzheimer brain. Mol Chem Neuropathol 1992; 16: 207–224.
Google Scholar | Crossref | Medline44. Yi, D, Lee, DY, Sohn, BK, et al. Beta-Amyloid associated differential effects of APOE ε4 on brain metabolism in cognitively normal elderly. Am J Geriatr Psychiatry 2014; 22: 961–970.
Google Scholar | Crossref | Medline | ISI45. Arenaza-Urquijo, EM, Gonneaud, J, Fouquet, M, et al. Interaction between years of education and APOEε4 status on frontal and temporal metabolism. Neurology 2015; 85: 1392–1399.
Google Scholar | Crossref | Medline46. Shaw K, Bell L, Boyd K, et al. Neurovascular coupling and oxygenation are decreased in hippocampus compared to neocortex because of microvascular differences. Nat Commun 2021; 12: 3190.
Google Scholar47. Bell, RD, Winkler, EA, Singh, I, et al. Apolipoprotein E controls cerebrovascular integrity via cyclophilin A. Nature 2012; 485: 512–516.
Google Scholar | Crossref | Medline | ISI48. Kisler, K, Nelson, AR, Rege, SV, et al. Pericyte degeneration leads to neurovascular uncoupling and limits oxygen supply to brain. Nat Neurosci 2017; 20: 406–416.
Google Scholar | Crossref | Medline | ISI49. March-Diaz, R, Lara-Ureña, N, Romero-Molina, C, et al. Hypoxia compromises the mitochondrial metabolism of Alzheimer’s disease microglia via HIF1. Nat Aging 2021; 1: 385–399.
Google Scholar | Crossref50. Reiman, EM, Chen, K, Alexander, GE, et al. Functional brain abnormalities in young adults at genetic risk for late-onset Alzheimer's dementia. Proc Natl Acad Sci U S A 2004; 101: 284–289.

Comments (0)

No login
gif