Molecular evidence of polyandry and polygyny in the mating system of the non-biting midge Chironomus riparius (Diptera: Chironomidae)

Samways MJ. Insects in biodiversity conservation: some perspectives and directives. Biodivers Conserv. 1993;2(3):258-82. https://doi.org/10.1007/BF00056672

Stork NE. How many species of insects and other terrestrial arthropods are there on Earth? Annu Rev Entomol. 2018;63:31-45. https://doi.org/10.1146/annurev-ento-020117-043348

Armitage PD. Behaviour and ecology of adults. In: Armitage PD, Cranston PS, Pinder LCV, editors. The Chironomidae. Dordrecht: Springer; 1995. p. 194-224. https://doi.org/10.1007/978-94-011-0715-0_9

Sari A. Evolutionary relationships among several species from the genus Cricotopus (Diptera: Chironomidae): What about Turkish representatives of this genus? Turk J Zool. 2022;46(1):129-43. https://doi.org/10.3906/zoo-2108-25

Cranston PS. Introduction. In: Armitage PD, Cranston PS, Pinder LCV, editors. The Chironomidae. Dordrecht: Springer; 1995. p. 1-7. https://doi.org/10.1007/978-94-011-0715-0_1

Pinder LCV. Biology of freshwater Chironomidae. Annu Rev Entomol. 1986;31(1):1-23. https://doi.org/10.1146/annurev.en.31.010186.000245

Karima Z. Chironomidae: biology, ecology and systematics. In: Perveen FK, editor. The Wonders of Diptera - Characteristics, Diversity, and Significance for the World’s Ecosystems. London: IntechOpen; 2021. p. 1-25. https://doi.org/10.5772/intechopen.95577

Kon M. The mating system of chironomid midges (Diptera: Chironomidae): a review. Mem Fac Sci Kyoto Univ (Ser Biol).. 1987;12(2):129-34.

Halpern M, Senderovich Y. Chironomid microbiome. Microb Ecol. 2015;70(1):1-8. https://doi.org/10.1007/s00248-014-0536-9

Neems RM, Lazarus J, Mclachlan AJ. Swarming behavior in male chironomid midges: a cost-benefit analysis. Behav Ecol. 1992;3(4):285-90. https://doi.org/10.1093/beheco/3.4.285

Péry ARR, Garric J. Modelling effects of temperature and feeding level on the life cycle of the midge Chironomus riparius: an energy-based modelling approach. Hydrobiologia. 2006;553(1):59-66. https://doi.org/10.1007/s10750-005-1284-0

Saraiva AS, Sarmento RA, Rodrigues ACM, Campos D, Fedorova G, Žlábek V, Gravato C, Pestana JLT, Soares AMVM. Assessment of thiamethoxam toxicity to Chironomus riparius. Ecotoxicol Environ Saf. 2017;137:240-6. https://doi.org/10.1016/j.ecoenv.2016.12.009

Duran M, Michailova P, Sari A, Ilkova J, Sen A, Karadurmus E. Assessment of the sediment toxicity in Bulgarian and Turkish rivers using the biomarkers in Chironomus riparius Mg. (Diptera: Chironomidae). Acta Zool Bulg. 2012;Supplement 4:167-73.

Janakiev T, Milošević Đ, Petrović M, Miljković J, Stanković N, Zdravković DS, Dimkić I. Chironomus riparius larval gut bacteriobiota and its potential in microplastic degradation. Microb Ecol. 2023;86(3):1909-22. https://doi.org/10.1007/s00248-023-02199-6

Soares S, Cativa I, Moreira-Santos M, Soares AMVM, Ribeiro R. A short-term sublethal in situ sediment assay with Chironomus riparius based on postexposure feeding. Arch Environ Contam Toxicol. 2005;49(2):163-72. https://doi.org/10.1007/s00244-004-0060-x

Sari A, Sari F. A comparative examination of acute toxicities of three disazo dyes to freshwater macroinvertebrates Gammarus roeseli (Crustacea: Amphipoda) and Chironomus riparius (Insecta: Diptera). Chem Ecol. 2021;37(8):683-703. https://doi.org/10.1080/02757540.2021.1974008

Watts MM, Pascoe D. A comparative study of Chironomus riparius Meigen and Chironomus tentans Fabricius (Diptera:Chironomidae) in aquatic toxicity tests. Arch Environ Contam Toxicol. 2000;39(3):299-306. https://doi.org/10.1007/s002440010108

Sari A. Assessment of pollution variability across the central part of the Büyük Menderes River (Turkey) using water physicochemical parameters and biomarker responses in the non-biting midge Chironomus riparius (Diptera: Chironomidae). Chem Ecol. 2023;39(1):59-77. https://doi.org/10.1080/02757540.2022.2147515

Hansen LS, Laursen SF, Bahrndorff S, Sørensen JG, Sahana G, Kristensen TN, Nielsen HM. The unpaved road towards efficient selective breeding in insects for food and feed—A review. Entomol Exp Appl. 2025;173(6):498-521. https://doi.org/10.1111/eea.13526

Boomsma JJ. Lifetime monogamy and the evolution of eusociality. Philos Trans R Soc Lond B Biol Sci. 2009;364(1533):3191-207. https://doi.org/10.1098/rstb.2009.0101

Hoffmann L, Hull KL, Bierman A, Badenhorst R, Bester-van der Merwe AE, Rhode C. Patterns of genetic diversity and mating systems in a mass-reared black soldier fly colony. Insects. 2021;12(6):480. https://doi.org/10.3390/insects12060480

Bonizzoni M, Katsoyannos BI, Marguerie R, Guglielmino CR, Gasperi G, Malacrida A, Chapman T. Microsatellite analysis reveals remating by wild Mediterranean fruit fly females, Ceratitis capitata. Mol Ecol. 2002;11(10):1915-21. https://doi.org/10.1046/j.1365-294X.2002.01602.x

Papach A, Beaurepaire A, Yañez O, Huwiler M, Williams GR, Neumann P. Multiple mating by both sexes in an invasive insect species, Aethina tumida (Coleoptera: Nitidulidae). Insect Sci. 2023;30(2):517-29. https://doi.org/10.1111/1744-7917.13112

Belouard N, Behm JE. Multiple paternity in the invasive spotted lanternfly (Hemiptera: Fulgoridae). Environ Entomol. 2023;52(5):949-55. https://doi.org/10.1093/ee/nvad083

Ostroverkhova N V., Konusova OL, Kucher AN, Kireeva TN. Investigation of polyandry in honey bees (Apis mellifera) using microsatellites. Entomol Rev. 2016;96(4):389-94. https://doi.org/10.1134/S0013873816040011

Bretman A, Tregenza T. Measuring polyandry in wild populations: a case study using promiscuous crickets. Mol Ecol. 2005;14(7):2169-79. https://doi.org/10.1111/j.1365-294X.2005.02556.x

Sadek MM. Polyandry in field-collected Spodoptera littoralis moths and laboratory assessment of the effects of male mating history. Entomol Exp Appl. 2001;98(2):165-72. https://doi.org/10.1046/j.1570-7458.2001.00771.x

Sari A, Duran M, Bardakci F. Discrimination of Orthocladiinae species (Diptera: Chironomidae) by using cytochrome c oxidase subunit I. Acta Zool Bulg. 2012;Supplement 4:73-80.

Nowak C, Hankeln T, Schmidt ER, Schwenk K. Development and localization of microsatellite markers for the sibling species Chironomus riparius and Chironomus piger (Diptera: Chironomidae). Mol Ecol Notes. 2006;6(3):915-7. https://doi.org/10.1111/j.1471-8286.2006.01398.x

van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P. MICRO-CHECKER: Software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes. 2004;4(3):535-8. https://doi.org/10.1111/j.1471-8286.2004.00684.x

Rousset F. GENEPOP’007: A complete re-implementation of the GENEPOP software for Windows and Linux. Mol Ecol Resour. 2008;8(1):103-6. https://doi.org/10.1111/j.1471-8286.2007.01931.x

Hanotte O, Burke T, Armour JAL, Jeffreys AJ. Hypervariable minisatellite DNA sequences in the Indian peafowl Pavo cristatus. Genomics. 1991;9(4):587-97. https://doi.org/10.1016/0888-7543(91)90351-E

Waits LP, Luikart G, Taberlet P. Estimating the probability of identity among genotypes in natural populations: Cautions and guidelines. Mol Ecol. 2001;10(1):249-56. https://doi.org/10.1046/j.1365-294X.2001.01185.x

Westneat DF, Frederick PC, Wiley RH. The use of genetic markers to estimate the frequency of successful alternative reproductive tactics. Behav Ecol Sociobiol. 1987;21(1):35-45. https://doi.org/10.1007/BF00324433

Neff BD, Pitcher TE. Assessing the statistical power of genetic analyses to detect multiple mating in fishes. J Fish Biol. 2002;61(3):739-50. https://doi.org/10.1111/j.1095-8649.2002.tb00908.x

Jones AG. GERUD 2.0: A computer program for the reconstruction of parental genotypes from half-sib progeny arrays with known or unknown parents. Mol Ecol Notes. 2005;5(3):708-11. https://doi.org/10.1111/j.1471-8286.2005.01029.x

Jones OR, Wang J. COLONY: A program for parentage and sibship inference from multilocus genotype data. Mol Ecol Resour. 2010;10(3):551-5. https://doi.org/10.1111/j.1755-0998.2009.02787.x

Starr CK. Sperm competition, kinship, and sociality in the aculeate Hymenoptera. In: Smith RL, editor. Sperm Competition and the Evolution of Animal Mating Systems. Orlando, FL: Academic Press Inc.; 1984. p. 428-64. https://doi.org/10.1016/B978-0-12-652570-0.50018-X

Pamilo P. Polyandry and allele frequency differences between the sexes in the ant Formica aquilonia. Heredity. 1993;70(5):472-80. https://doi.org/10.1038/hdy.1993.69

Charlesworth B. Effective population size and patterns of molecular evolution and variation. Nat Rev Genet. 2009;10(3):195-205. https://doi.org/10.1038/nrg2526

Song SD, Drew RAI, Hughes JM. Multiple paternity in a natural population of a wild tobacco fly, Bactrocera cacuminata (Diptera: Tephritidae), assessed by microsatellite DNA markers. Mol Ecol. 2007;16(11):2353-61. https://doi.org/10.1111/j.1365-294X.2007.03277.x

Sefc KM, Koblmüller S. Assessing parent numbers from offspring genotypes: the importance of marker polymorphism. J Hered. 2009;100(2):197-205. https://doi.org/10.1093/jhered/esn095

Taylor ML, Price TAR, Wedell N. Polyandry in nature: a global analysis. Trends Ecol Evol. 2014;29(7):376-83. https://doi.org/10.1016/j.tree.2014.04.005

Lin J. The interplay between bird migration behavior and genetic diversity. Genomics Appl Biol. 2024;15(1):1-7. https://doi.org/10.5376/gab.2024.15.0001

Duff LB, Proulx ANM, Corbin LAJ, Richards MH. Evidence for multiple mating by female eastern carpenter bees, Xylocopa virginica (Hymenoptera: Apidae). Can Entomol. 2023;155:e10. https://doi.org/10.4039/tce.2022.51

Puppato S, Fiorenza G, Carraretto D, Gomulski LM, Gasperi G, Caceres C, Grassi A, Mancini MV, De Cristofaro A, Ioriatti C, Guilhot R, Malacrida AR. High promiscuity among females of the invasive pest species Drosophila suzukii. Mol Ecol. 2023;32(22):6018-26. https://doi.org/10.1111/mec.17161

Good JM, Ross CL, Markow TA. Multiple paternity in wild-caught Drosophila mojavensis. Mol Ecol. 2006;15(8):2253-60. https://doi.org/10.1111/j.1365-294X.2006.02847.x

Martin J, Lee BTO. Indirect evidence for multiple insemination in Chironomus oppositus Walker (Diptera: Chironomidae). Aust J Entomol. 1989;28(1):77-80. https://doi.org/10.1111/j.1440-6055.1989.tb01199.x

Nason SE, Kelly CD. Benefits of multiple mating in a sexually dimorphic polygynandrous insect. Anim Behav. 2020;164:65-72. https://doi.org/10.1016/j.anbehav.2020.03.018

Allard D, Van Hulle M, Billen J, Gobin B. Multiply mating males in Gnamptogenys striatula Mayr (Hymenoptera, Formicidae). J Insect Behav. 2008;21(6):476-80. https://doi.org/10.1007/s10905-008-9143-2

Arnqvist G, Nilsson T. The evolution of polyandry: multiple mating and female fitness in insects. Anim Behav. 2000;60(2):145-64. https://doi.org/10.1006/anbe.2000.1446

Slatyer RA, Mautz BS, Backwell PRY, Jennions MD. Estimating genetic benefits of polyandry from experimental studies: a meta-analysis. Biol Rev. 2012;87(1):1-33. https://doi.org/10.1111/j.1469-185X.2011.00182.x

Danielsson I. Mechanisms of sperm competition in insects. Ann Zool Fennici. 1998;35(4):241-57.

Székely T, Weissing FJ, Komdeur J. Adult sex ratio variation: implications for breeding system evolution. J Evol Biol. 2014;27(8):1500-12. https://doi.org/10.1111/jeb.12415

Ancona S, Dénes F V., Krüger O, Székely T, Beissinger SR. Estimating adult sex ratios in nature. Philos Trans R Soc Lond B Biol Sci. 2017;372(1729):20160313. https://doi.org/10.1098/rstb.2016.0313

Herridge EJ. The role of polyandry in sexual selection among dance flies [dissertation]. [Stirling, UK]: School of Natural Sciences, University of Stirling; 2016. 166 p.

Comments (0)

No login
gif