Pham HN, Ibrahim R, Sainbayar E, Olson A, Singh A, Khanji MY, Lee J, Somers VK, Wenger C, Chahal CAA, Mamas MA. Burden of hyperlipidemia, cardiovascular mortality, and COVID-19: A retrospective-cohort analysis of US data. J Am Heart Assoc. 2025;14(5):e037381. https://doi.org/10.1161/JAHA.124.037381
Patial S, Sharma A, Raj K, Shukla G. Atherosclerosis: Progression, risk factors, diagnosis, treatment, probiotics and synbiotics as a new prophylactic hope. The Microbe. 2024;5:100212. https://doi.org/10.1016/j.microb.2024.100212
Vekic J, Stromsnes K, Mazzalai S, Zeljkovic A, Rizzo M, Gambini J. Oxidative stress, atherogenic dyslipidemia, and cardiovascular risk. Biomedicines. 2023;11(11):2897. https://doi.org/10.3390/biomedicines11112897
Johnston TP, Waxman DJ. The induction of atherogenic dyslipidemia in poloxamer 407-treated mice is not mediated through PPARα. J Pharm Pharmacol. 2008;60(6):753. https://doi.org/10.1211/jpp.60.6.0011
Korolenko TA, Johnston TP, Tuzikov FV, Tuzikova NA, Pupyshev AB, Spiridonov VK, Goncharova NV, Maiborodin IV, Zhukova NA. Early-stage atherosclerosis in poloxamer 407-induced hyperlipidemic mice: Pathological features and changes in the lipid composition of serum lipoprotein fractions and subfractions. Lipids Health Dis. 2016;15(16). https://doi.org/10.1186/s12944-016-0186-7
Bhan R, Desai D, Patel V, Kumar S, Mehta H. Poloxamer 407-induced hyperlipidemia as a model for studying lipid metabolism. J Lipid Res. 2015;56(10):1906–16. https://doi.org/10.1194/jlr.R056015
Jiang J, Zhang R, Liu X, Sun T, Wang H. The effects of Poloxamer 407 on lipid metabolism in rats. Exp Ther Med. 2019;17(1):699–707. https://doi.org/10.3892/etm.2019.7607
Vikal A, Maurya R, Bhowmik S, Khare S, Raikwar S, Patel P, Das Kurmi B. Resveratrol: A comprehensive review of its multifaceted health benefits, mechanisms of action, and potential therapeutic applications in chronic disease. Pharmacol Res Nat Prod. 2024;3:100047. https://doi.org/10.1016/j.prenap.2024.100047
Gęgotek A, Skrzydlewska E. Antioxidative and anti-inflammatory activity of ascorbic acid. Antioxidants (Basel). 2022;11(10):1993. https://doi.org/10.3390/antiox11101993
Nowacka A, Śniegocka M, Smuczyński W, Liss S, Ziółkowska E, Bożiłow D, Śniegocki M, Wiciński M. The potential application of resveratrol and its derivatives in central nervous system tumors. Int J Mol Sci. 2023;25(24):13338. https://doi.org/10.3390/ijms252413338
Morkovin E, Litvinov R, Koushner A, Babkov D. Resveratrol and extra virgin olive oil: Protective agents against age-related disease. Nutrients. 2023;16(24):4258. https://doi.org/10.3390/nu16244258
Meng T, Xiao D, Muhammed A, Deng J, Chen L, He J. Anti-inflammatory action and mechanisms of resveratrol. Molecules. 2021;26(1):229. https://doi.org/10.3390/molecules26010229
Yu X, Jia Y, Ren F. Multidimensional biological activities of resveratrol and its prospects and challenges in the health field. Front Nutr. 2024;11:1408651. https://doi.org/10.3389/fnut.2024.1408651
Wendling D, Abbas W, Godfrin-Valnet M, Guillot X, Khan KA, Cedoz P, B aud L, Prati C, Herbein G. Resveratrol, a sirtuin 1 activator, increases IL-6 production by peripheral blood mononuclear cells of patients with knee osteoarthritis. Clin Epigenetics. 2013;5(1):10. https://doi.org/10.1186/1868-7083-5-10
Liu Y, Wang X, Zhou H, Xu Z, Li Y. Effects of resveratrol on lipid metabolism and inflammatory cytokines in high-fat diet-induced obese mice. J Nutr Biochem. 2018; 56; 1–9. https://doi.org/10.1016/j.jnutbio.2018.02.001
Korolenko TA, Johnston TP, Dubrovina NI, Kisarova YA, Zhanaeva SY, Cherkanova MS, Filjushina EE, Alexeenko TV, Machova E, Zhukova NA. Effect of poloxamer 407 administration on the serum lipids profile, anxiety level, and protease activity in the heart and liver of mice. Interdiscip Toxicol. 2013;6(1);18. https://doi.org/10.2478/intox-2013-0004
Gunawan S, Aulia A, Soetikno V. Development of rat metabolic syndrome models: A review. Vet World. 2021;14(7):1774–83. https://doi.org/10.14202/vetworld.2021.1774-1783
Chaudhary HR, Brocks DR. The single-dose poloxamer 407 model of hyperlipidemia; systemic effects on lipids assessed using pharmacokinetic methods, and its effects on adipokines. J Pharm Pharm Sci. 2013;16(1):65–73. https://doi.org/10.18433/j37g7m
Clemente-Suárez VJ, Martín-Rodríguez A, Redondo-Flórez L, López-Mora C, Yáñez-Sepúlveda R, Tornero-Aguilera JF. New insights and potential therapeutic interventions in metabolic diseases. Int J Mol Sci. 2023:24(13):10672. https://doi.org/10.3390/ijms241310672
Wasan KM, Subramanian R, Kwong M, Goldberg IJ, Wright T, Johnston TP. Poloxamer 407-mediated alterations in the activities of enzymes regulating lipid metabolism in rats. J Pharm Pharm Sci. 2003;6(2):189-97.
Reda D, Elshopakey GE, Mahgoub HA, Risha EF, Khan AA, Rajab BS, El-Boshy ME, Abdelhamid FM. Effects of Resveratrol Against Induced Metabolic Syndrome in Rats: Role of Oxidative Stress, Inflammation, and Insulin Resistance. Evid Based Complement Alternat Med. 2022;2022:3362005. https://doi.org/10.1155/2022/3362005
Zhu L, Luo X, Jin Z. Effect of resveratrol on serum and liver lipid profile and antioxidant activity in hyperlipidemia rats. Anim Biosci. 2008;21(6):890-5. https://doi.org/10.5713/ajas.2008.70638
Joo IW, Ryu JH, Oh HJ. The influence of Sam-Chil-Geun (Panax notoginseng) on the serum lipid levels and inflammations of rats with hyperlipidemia induced by poloxamer-407. Yonsei Med J. 2010;51(4):504–10. https://doi.org/10.3349/ymj.2010.51.4.504
Johnston TP, Palmer WK. Mechanism of poloxamer 407-induced hypertriglyceridemia in rats. Biochem Pharmacol. 1993;46(6):1037–42. https://doi.org/10.1016/0006-2952(93)90668-M
Oliveira JC, Antonietto CRK, Scalabrini AC, Marinho TS, Pernomian L, Corrêa JWN, Restini C. Antioxidant protective effects of resveratrol on the cardiac and vascular tissues from renal hypertensive rats. Open J Mol Cell Biol. 2012;2(3):147–63. https://doi.org/10.4236/ojmc.2012.23008
Abdulghani MAM, Alshehade SA, Kamran S, Alshawsh MA. Effect of monosodium glutamate on serum sex hormones and uterine histology in female rats along with its molecular docking and in-silico toxicity. Heliyon. 2022;8(10):e10967. https://doi.org/10.1016/j.heliyon.2022.e10967
Dharmaraj S, Rajaragupathy S, Denishya S. A descriptive study of atherogenic indices in patients admitted to a tertiary care hospital. Cureus. 2022;14(12):e32231. https://doi.org/10.7759/cureus.32231
Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979;95(2):351–8. https://doi.org/10.1016/0003-2697(79)90738-3
Misra HP, Fridovich I. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem. 1972;247(10):3170–5. https://doi.org/10.1016/S0021-9258(19)45228-9
Claiborne A. Catalase activity. In: Greenwald RA, editor. CRC Handbook of Methods for Oxygen Radical Research. Boca Raton (FL): CRC Press; 1985. p. 283–4.
Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–54. https://doi.org/10.1016/0003-2697(76)90527-3
Novelli LB, Diniz YS, Galhardi CM, Ebaid GMX, Rodrigues HG, Fernandes AAH, Cicogna AC, Novelli Filho JL. Anthropometrical parameters and markers of obesity in rats. Lab Anim. 2007;41(1):111–25. https://doi.org/10.1258/002367707779399518
Johnston TP, Korolenko TA, Sahebkar A. P-407-induced mouse model of dose-controlled hyperlipidemia and atherosclerosis: 25 years later. J Cardiovasc Pharmacol. 2017;70(5):339–52. https://doi.org/10.1097/fjc.0000000000000522
Güleç S, Erol C. High-density lipoprotein cholesterol and risk of cardiovascular disease. E-J Cardiol Pract. 2020;19(3).
Cao X, Liao W, Xia H, Wang S, Sun G. The effect of resveratrol on blood lipid profile: A dose-response meta-analysis of randomized controlled trials. Nutrients. 2022;14(18):3755. https://doi.org/10.3390/nu14183755
Yang H, Sun Y, Zhang J, Xu S, Tang L, Gong J, Fang H, Lin Y, Ren J, Su D. Resveratrol ameliorates triglyceride accumulation through FXR deacetylation in high glucose-treated HepG2 cells. J Funct Foods. 2023;107:105679. https://doi.org/10.1016/j.jff.2023.105679
Salehi B, Mishra AP, Nigam M, Sener B, Kilic M, Sharifi-Rad M, Fokou PVT, Martins N, Sharifi-Rad J. Resveratrol: A double-edged sword in health benefits. Biomedicines. 2018;6(3):91. https://doi.org/10.3390/biomedicines6030091
Izzo C, Annunziata M, Melara G, Sciorio R, Dallio M, Masarone M, Federico A, Persico M. The role of resveratrol in liver disease: A comprehensive review from in vitro to clinical trials. Nutrients. 2021;13(3):933. https://doi.org/10.3390/nu13030933
Marques LR, Diniz TA, Antunes BM, Rossi FE, Caperuto EC, Lira FS, Gonçalves DC. Reverse cholesterol transport: Molecular mechanisms and the non-medical approach to enhance HDL cholesterol. Front Physiol. 2018;9:331734. https://doi.org/10.3389/fphys.2018.00526
Gupta N, Kandimalla R, Priyanka K, Singh G, Gill KD, Singh S. Effect of resveratrol and nicotine on PON1 gene expression: In vitro study. Indian J Clin Biochem. 2014;29(1):69–73. https://doi.org/10.1007/s12291-013-0300-9
Kim DS, Marsillach J, Furlong CE, Jarvik GP. Pharmacogenetics of paraoxonase activity: Elucidating the role of high-density lipoprotein in disease. Pharmacogenomics. 2013;14(12):1495. https://doi.org/10.2217/pgs.13.147
Lumu W, Bahendeka S, Wesonga R, Kibirige D, Kasoma RM, Ssendikwanawa E. Atherogenic index of plasma and its cardiovascular risk factor correlates among patients with type 2 diabetes in Uganda. Afr Health Sci. 2023;23(1):515. https://doi.org/10.4314/ahs.v23i1.54
Zhang Y, Song Y, Lu Y, Liu T, Yin P. Atherogenic index of plasma and cardiovascular disease risk in cardiovascular-kidney-metabolic syndrome stage 1 to 3: A longitudinal study. Front Endocrinol (Lausanne). 2025;16:1517658. https://doi.org/10.3389/fendo.2025.1517658
Imannezhad M, Kamrani F, Shariatikia A, Nasrollahi M, Mahaki H, Rezaee A, Moohebati M, Shahri SHH, Darroudi S. Association of atherogenic indices and triglyceride-total cholesterol-body weight index (TCBI) with severity of stenosis in patients undergoing angiography: A case-control study. BMC Res Notes. 2025;18:180. https://doi.org/10.1186/s13104-025-07203-5
Akbari M, Tamtaji OR, Lankarani KB, Tabrizi R, Dadgostar E, Haghighat N, Kolahdooz F, Ghaderi A, Mansournia MA, Asemi Z. The effects of resveratrol on lipid profiles and liver enzymes in metabolic syndrome and related disorders: A systematic review and meta-analysis of randomized controlled trials. Lipids Health Dis. 2020;19(25). https://doi.org/10.1186/s12944-020-1198-x
Abduh MS, Saghir SAM, Al Hroob AM, Bin-Ammar A, Al-Tarawni AH, Murugaiyah V, Mahmoud AM. Averrhoa carambola leaves prevent dyslipidemia and oxidative stress in a rat model of poloxamer-407-induced acute hyperlipidemia. Front Pharmacol. 2023;14:1134812. https://doi.org/10.3389/fphar.2023.1134812
Nie K, Deng T, Bai Y, Zhang Y, Chen Z, Peng X, Xia L, Liu J. Association between composite dietary antioxidant index and hyperlipidemia in adults based on the NHANES. Sci Rep. 2025;15(1):1–11. https://doi.org/10.1038/s41598-025-86223-4
Ayala A, Muñoz MF, Argüelles S. Lipid peroxidation: Production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid Med Cell Longev. 2014;2014:360438. https://doi.org/10.1155/2014/360438
Martemucci G, Costagliola C, Mariano M, Napolitano P, Gabriella A. Free radical properties, source and targets, antioxidant consumption and health. Oxygen (Basel). 2022;2(2):48–78. https://doi.org/10.3390/oxygen2020006
Chaudhary P, Janmeda P, Docea AO, Yeskaliyeva B, Abdull Razis AF, Modu B, Calina D, Sharifi-Rad J. Oxidative stress, free radicals and antioxidants: Potential crosstalk in the pathophysiology of human diseases. Front Chem. 2023;11:1158198. https://doi.org/10.3389/fchem.2023.1158198
Zhang H, Dhalla NS. The role of pro-inflammatory cytokines in the pathogenesis of cardiovascular disease. Int J Mol Sci. 2024;25(2):1082. https://doi.org/10.3390/ijms25021082
Xu L, Yang Q, Zhou J. Mechanisms of abnormal lipid metabolism in the pathogenesis of disease. Int J Mol Sci. 2024;25(15):8465. https://doi.org/10.3390/ijms25158465
Barabási B, Barna L, Santa-Maria AR, Harazin A, Molnár R, Kincses A, Vigh JP, Dukay B, Sántha M, Tóth ME, Walter FR, Deli MA, Hoyk Z. Role of interleukin-6 and interleukin-10 in morphological and functional changes of the blood–brain barrier in hypertriglyceridemia. Fluids Barriers CNS. 2023;20(15). https://doi.org/10.1186/s12987-023-00418-3
Lawrence T. The nuclear factor NF-κB pathway in inflammation. Cold Spring Harb Perspect Biol. 2009;1(6):a001651. https://doi.org/10.1101/cshperspect.a001651
Chen GD, Yu WD, Chen XP. SirT1 activator represses the transcription of TNF-α in THP-1 cells of a sepsis model via deacetylation of H4K16. Mol Med Rep. 2016;14(6):5544–50. https://doi.org/10.3892/mmr.2016.5942
Wang M, Weng X, Chen H, Chen Z, Liu X. Resveratrol inhibits TNF-α-induced inflammation to protect against renal ischemia/reperfusion injury in diabetic rats. Acta Cir Bras. 2020;35(5):e202000506. https://doi.org/10.1590/s0102-865020200050000006
Dagvadorj J, Naiki Y, Tumurkhuu G, Hassan F, Islam S, Koide N, Mori I, Yoshida T, Yokochi T. Interleukin-10 inhibits tumor necrosis factor-α production in lipopolysaccharide-stimulated RAW 264.7 cells through reduced MyD88 expression. Innate Immun. 2008;14(2):109–15. https://doi.org/10.1177/1753425908089618
Kermani P, Hempstead B. BDNF actions in the cardiovascular system: Roles in development, adulthood and response to injury. Front Physiol. 2019;10:416254. https://doi.org/10.3389/fphys.2019.00455
Hang P, Zhu H, Li P, Liu J, Ge F, Zhao J, Du ZM. The emerging role of BDNF/TrkB signaling in cardiovascular diseases. Life (Basel). 2020;11(1):70. https://doi.org/10.3390/life11010070
Gerbaix M, Metz L, Ringot E, Courteix D. Visceral fat mass determination in rodent: Validation of dual-energy X-ray absorptiometry and anthropometric techniques in fat and lean rats. Lipids Health Dis. 2010;9:140. https://doi.org/10.1186/1476-511X-9-140
Comments (0)