Golubnitschaja O, Kinkorova J, Costigliola V. Predictive, preventive and personalised medicine as the hardcore of ‘Horizon 2020’: EPMA position paper. EPMA J. 2014;5(1): 6. https://doi.org/10.1186/1878-5085-5-6.
Article PubMed PubMed Central Google Scholar
Koklesova L, Mazurakova A, Samec M, Kudela E, Biringer K, Kubatka P, Golubnitschaja O. Mitochondrial health quality control: measurements and interpretation in the framework of predictive, preventive, and personalized medicine. EPMA J. 2022;13(2):177–93. https://doi.org/10.1007/s13167-022-00281-6.
Article PubMed PubMed Central Google Scholar
Pesta M, Mrazova B, Kapalla M, Kulda V, Gkika E, Golubnitschaja O. Mitochondria-based holistic 3PM approach as the ‘game-changer’ for individualised rehabilitation-the proof-of-principle model by treated breast cancer survivors. EPMA J. 2024;15(4):559–71. https://doi.org/10.1007/s13167-024-00386-0.
Article PubMed PubMed Central Google Scholar
Shao Q, Ndzie Noah ML, Golubnitschaja O, Zhan X. Mitochondrial medicine: “from bench to bedside” 3PM-guided concept. EPMA J. 2025;16(2):239–64. https://doi.org/10.1007/s13167-025-00409-4.
Article PubMed PubMed Central Google Scholar
Pajares S, Arias A, García-Villoria J, Briones P, Ribes A. Role of creatine as biomarker of mitochondrial diseases. Mol Genet Metab. 2013;108(2):119–24. https://doi.org/10.1016/j.ymgme.2012.11.283.
Article CAS PubMed Google Scholar
Ostojic SM. Plasma creatine as a marker of mitochondrial dysfunction. Med Hypotheses. 2018;113:52–3. https://doi.org/10.1016/j.mehy.2018.02.022.
Article CAS PubMed Google Scholar
Kamel MA, Moussa YY, Gowayed MA. Creatine monohydrate for mitochondrial nutrition. In: Ostojic SM, editors. Molecular Nutrition and Mitochondria. Academic Press; 2023. pp. 383–415. https://doi.org/10.1016/B978-0-323-90256-4.00004-7
Wallimann T, Tokarska-Schlattner M, Schlattner U. The creatine kinase system and pleiotropic effects of creatine. Amino Acids. 2011;40(5):1271–96. https://doi.org/10.1007/s00726-011-0877-3.
Article CAS PubMed PubMed Central Google Scholar
Gutiérrez-Hellín J, Del Coso J, Franco-Andrés A, Gamonales JM, Espada MC, González-García J, López-Moreno M, Varillas-Delgado D. Creatine supplementation beyond athletics: benefits of different types of creatine for women, vegans, and clinical populations-a narrative review. Nutrients. 2024;17(1): 95. https://doi.org/10.3390/nu17010095.
Article CAS PubMed PubMed Central Google Scholar
Sahlin K, Harris RC. The creatine kinase reaction: a simple reaction with functional complexity. Amino Acids. 2011;40(5):1363–7. https://doi.org/10.1007/s00726-011-0856-8.
Article CAS PubMed Google Scholar
Karo J, Peterson P, Vendelin M. Molecular dynamics simulations of creatine kinase and adenine nucleotide translocase in mitochondrial membrane patch. J Biol Chem. 2012;287(10):7467–76. https://doi.org/10.1074/jbc.M111.332320.
Article CAS PubMed PubMed Central Google Scholar
Ostojic SM. Impaired bioenergetics in clinical medicine: a target to tackle. Tohoku J Exp Med. 2017;243(4):227–35. https://doi.org/10.1620/tjem.243.227.
Lygate CA, Medway DJ, Ostrowski PJ, Aksentijevic D, Sebag-Montefiore L, Hunyor I, Zervou S, Schneider JE, Neubauer S. Chronic creatine kinase deficiency eventually leads to congestive heart failure, but severity is dependent on genetic background, gender and age. Basic Res Cardiol. 2012;107(5):276. https://doi.org/10.1007/s00395-012-0276-2.
Article CAS PubMed PubMed Central Google Scholar
Fons C, Campistol J. Creatine defects and central nervous system. Semin Pediatr Neurol. 2016;23(4):285–9. https://doi.org/10.1016/j.spen.2016.11.003.
Ghirardini E, Calugi F, Sagona G, Di Vetta F, Palma M, Battini R, Cioni G, Pizzorusso T, Baroncelli L. The role of preclinical models in creatine transporter deficiency: neurobiological mechanisms, biomarkers and therapeutic development. Genes (Basel). 2021;12(8): 1123. https://doi.org/10.3390/genes12081123.
Article CAS PubMed Google Scholar
Ranisavljev M, Todorovic N, Ostojic J, Ostojic SM. Reduced tissue creatine levels in patients with long COVID-19: A cross-sectional study. J Postgrad Med. 2023;69(3):162–3. https://doi.org/10.4103/jpgm.jpgm_65_23.
Article CAS PubMed PubMed Central Google Scholar
Maniti O, Lecompte MF, Marcillat O, Vial C, Granjon T. Mitochondrial creatine kinase interaction with cardiolipin-containing biomimetic membranes is a two-step process involving adsorption and insertion. Eur Biophys J. 2010;39(12):1649–55. https://doi.org/10.1007/s00249-010-0600-4.
Article CAS PubMed Google Scholar
Paradies G, Paradies V, Ruggiero FM, Petrosillo G. Role of cardiolipin in mitochondrial function and dynamics in health and disease: molecular and pharmacological aspects. Cells. 2019;8(7): 728. https://doi.org/10.3390/cells8070728.
Article CAS PubMed PubMed Central Google Scholar
Dolder M, Wendt S, Wallimann T. Mitochondrial creatine kinase in contact sites: interaction with porin and adenine nucleotide translocase, role in permeability transition and sensitivity to oxidative damage. Biol Signals Recept. 2001;10(1–2):93–111. https://doi.org/10.1159/000046878.
Article CAS PubMed Google Scholar
Brosnan ME, Edison EE, da Silva R, Brosnan JT. New insights into creatine function and synthesis. Adv Enzyme Regul. 2007;47:252–60. https://doi.org/10.1016/j.advenzreg.2006.12.005.
Article CAS PubMed Google Scholar
Schlattner U, Tokarska-Schlattner M, Wallimann T. Mitochondrial creatine kinase in human health and disease. Biochim Biophys Acta. 2006;1762(2):164–80. https://doi.org/10.1016/j.bbadis.2005.09.004.
Article CAS PubMed Google Scholar
Whittington HJ, Ostrowski PJ, McAndrew DJ, Cao F, Shaw A, Eykyn TR, Lake HA, Tyler J, Schneider JE, Neubauer S, Zervou S, Lygate CA. Over-expression of mitochondrial creatine kinase in the murine heart improves functional recovery and protects against injury following ischaemia-reperfusion. Cardiovasc Res. 2018;114(6):858–69. https://doi.org/10.1093/cvr/cvy054.
Article CAS PubMed PubMed Central Google Scholar
Barbieri E, Guescini M, Calcabrini C, Vallorani L, Diaz AR, Fimognari C, Canonico B, Luchetti F, Papa S, Battistelli M, Falcieri E, Romanello V, Sandri M, Stocchi V, Ciacci C, Sestili P. Creatine prevents the structural and functional damage to mitochondria in myogenic, oxidatively stressed C2C12 cells and restores their differentiation capacity. Oxid Med Cell Longev. 2016;2016: 5152029. https://doi.org/10.1155/2016/5152029.
Article CAS PubMed PubMed Central Google Scholar
Taskin S, Celik T, Demiryurek S, Turedi S, Taskin A. Effects of different-intensity exercise and creatine supplementation on mitochondrial biogenesis and redox status in mice. Iran J Basic Med Sci. 2022;25(8):1009–15. https://doi.org/10.22038/IJBMS.2022.65047.14321.
Article PubMed PubMed Central Google Scholar
Berneburg M, Gremmel T, Kürten V, Schroeder P, Hertel I, von Mikecz A, Wild S, Chen M, Declercq L, Matsui M, Ruzicka T, Krutmann J. Creatine supplementation normalizes mutagenesis of mitochondrial DNA as well as functional consequences. J Invest Dermatol. 2005;125(2):213–20. https://doi.org/10.1111/j.0022-202X.2005.23806.x.
Article CAS PubMed Google Scholar
Gowayed MA, Mahmoud SA, El-Sayed Y, Abu-Samra N, Kamel MA. Enhanced mitochondrial biogenesis is associated with the ameliorative action of creatine supplementation in rat soleus and cardiac muscles. Exp Ther Med. 2020;19(1):384–92. https://doi.org/10.3892/etm.2019.8173.
Article CAS PubMed Google Scholar
Hu NJ, Feng GL, Lai XH, Peng M, Song YF. Creatine ameliorates the adverse effects of high-fat diet on hepatic lipid metabolism via activating Mfn2-Mediated mitochondrial fusion in juvenile grass carp. Aquac Nutr. 2025;2025: 1151656. https://doi.org/10.1155/anu/1151656.
Comments (0)