Multivariable data-driven framework of predictive, preventive, and personalized medicine for long-term atrial fibrillation risk in patients with new-onset obstructive sleep apnea

Benjafield AV, Ayas NT, Eastwood PR, et al. Estimation of the global prevalence and burden of obstructive sleep apnoea: a literature-based analysis. Lancet Respir Med. 2019;7(8):687–98.

Article  PubMed  PubMed Central  Google Scholar 

Huang B, Liu H, Scherlag BJ, et al. Atrial fibrillation in obstructive sleep apnea: neural mechanisms and emerging therapies. Trends Cardiovasc Med. 2021;31(2):127–32.

Article  PubMed  Google Scholar 

Chung Mina K, Eckhardt Lee L, Chen Lin Y et al. Lifestyle and risk factor modification for reduction of atrial fibrillation: a scientific statement from the American Heart Association. Circulation, 2020, 141: e750-e772.

Arafa A, Kokubo Y, Shimamoto K, et al. Sleep duration and atrial fibrillation risk in the context of predictive, preventive, and personalized medicine: the Suita study and meta-analysis of prospective cohort studies. EPMA J. 2022;13(1):77–86.

Article  PubMed  PubMed Central  Google Scholar 

Freedman B, Camm J, Calkins H, et al. Screening for atrial fibrillation: a report of the AF-SCREEN international collaboration. Circulation. 2017;135:1851–67.

Article  PubMed  Google Scholar 

Smokovski I, Steinle N, Behnke A, et al. Digital biomarkers: 3PM approach revolutionizing chronic disease management - EPMA 2024 position. EPMA J. 2024;15(2):149–62.

Wang J, Zhu J, Li H, Wu S, Li S, Yao Z, et al. Multimodal visualization and explainable machine learning-driven markers enable early identification and prognosis prediction for symptomatic aortic stenosis and heart failure with preserved ejection fraction after transcatheter aortic valve replacement: multicenter cohort study. J Med Internet Res. 2025;27:e70587.

Golubnitschaja O, Polivka J Jr, Potuznik P, et al. The paradigm change from reactive medical services to 3PM in ischemic stroke: a holistic approach utilising tear fluid multi-omics, mitochondria as a vital biosensor and AI-based multi-professional data interpretation. EPMA J. 2024;15(1):1–23.

Article  PubMed  PubMed Central  Google Scholar 

Khanji MY, Bicalho VV, van Waardhuizen CN, Ferket BS, Petersen SE, Hunink MG. Cardiovascular risk assessment: a systematic review of guidelines. Ann Intern Med. 2016;165(10):713–22.

Article  PubMed  Google Scholar 

Benz AP, Hijazi Z, Lindbäck J, et al. Biomarker-based risk prediction with the ABC-AF scores in patients with atrial fibrillation not receiving oral anticoagulation. Circulation, 2021;19:1863–1873.

Batra R. Accurate machine learning in materials science facilitated by using diverse data sources. Nature. 2021;589(7843):524–5.

Article  CAS  PubMed  Google Scholar 

Chang JL, Goldberg AN, Alt JA, et al. International consensus statement on obstructive sleep apnea. Int Forum Allergy Rhinol. 2023;13(7):1061–482.

Article  PubMed  PubMed Central  Google Scholar 

Kapur VK, Auckley DH, Chowdhuri S, et al. Clinical practice guideline for diagnostic testing for adult obstructive sleep apnea: an American Academy of Sleep Medicine clinical practice guideline. J Clin Sleep Med. 2017; 3:479–504.

Tao LC, Xu JN, Wang TT, et al. Triglyceride-glucose index as a marker in cardiovascular diseases: landscape and limitations. Cardiovasc Diabetol. 2022 May 6;21(1):68.

Tudurachi BS, Anghel L, Tudurachi A, et al. Assessment of inflammatory hematological ratios (NLR, PLR, MLR, LMR and Monocyte/HDL-cholesterol ratio) in acute myocardial infarction and particularities in young patients. Int J Mol Sci. 2023 Sep 21;24(18):14378.

Zhang A, Sun W, Mei L, et al. Neutrophil-to-HDL-C Ratio as an inflammatory biomarker in patients with anxiety and obstructive coronary artery disease: a retrospective study. Heliyon. 2024 Oct 1;10(19):e38829.

Heart rate variability: standards of measurement, physiological interpretation and clinical use. Task force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Circulation 1996; 93: 1043–65.

Xhyheri B, Manfrini O, Mazzolini M et al. Heart rate variability today. Prog Cardiovasc Dis, 2012; 55: 321–31.

Calkins H, Hindricks G, Cappato R, et al. 2017 HRS/EHRA/ECAS/APHRS/SOLAECE expert consensus statement on catheter and surgical ablation of atrial fibrillation. Heart Rhythm. 2017;14(10):e275–444.

Article  PubMed  PubMed Central  Google Scholar 

Kursa MB, Rudnicki WR. Feature selection with the Boruta package. J Stat Softw. 2010;36:1–13.

Article  Google Scholar 

Lundberg SM, Lee S-I. A unified approach to interpreting model predictions. In: 31st conference on neural information processing systems (NIPS 2017). 2017. Long Beach, CA, USA.

Ding WY, Proietti M, Boriani G, et al. Clinical utility and prognostic implications of the novel 4S-AF scheme to characterize and evaluate patients with atrial fibrillation: a report from ESC-EHRA EORP-AF long-term general registry. Europace,2022;5:721–728.

Hendriks JM, Gallagher C, Middeldorp ME, et al. Risk factor management and atrial fibrillation. Europace. 2021;23(Suppl 2):ii52–60.

Article  PubMed  Google Scholar 

Ye Z, Xu Y, Tang L, et al. Predicting long-term prognosis after percutaneous coronary intervention in patients with new onset ST-elevation myocardial infarction: development and external validation of a nomogram model. Cardiovasc Diabetol. 2023;22(1):87.

Wang J, Wu X, Sun J, et al. Prediction of major adverse cardiovascular events in patients with acute coronary syndrome: development and validation of a non-invasive nomogram model based on autonomic nervous system assessment. Front Cardiovasc Med. 2022;9:1053470

Wang J, Xu Y, Zhu J, et al. Multimodal data-driven, vertical visualization prediction model for early prediction of atherosclerotic cardiovascular disease in patients with new-onset hypertension. J Hypertens. 2024 Jun 18.

Tang L, Wu M, Xu Y, et al. Multimodal data-driven prognostic model for predicting new-onset ST-elevation myocardial infarction following emergency percutaneous coronary intervention. Inflammation Research. 2023 Aug 29.

Wang J, Wang Y, Duan S, et al. Multimodal data-driven prognostic model for predicting long-term prognosis in patients with ischemic cardiomyopathy and heart failure with preserved ejection fraction after coronary artery bypass grafting: a multicenter cohort study. J Am Heart Assoc. 2024;27:e036970.

Article  Google Scholar 

Zhou T, Wang Y, Xu Y, et al. Multimodal data integration for enhanced longitudinal prediction for cardiac and cerebrovascular events following initial diagnosis of obstructive sleep apnea syndrome. J Glob Health. 2024;17(14):04103.

Article  Google Scholar 

Lee Y, Cha SJ, Park JH, et al. Association between insulin resistance and risk of atrial fibrillation in non-diabetics. Eur J Prev Cardiol. 2020;18:1934–1941.

Wang Z, He H, Xie Y, Li J, Luo F, Sun Z, et al. Non-insulin-based insulin resistance indexes in predicting atrial fibrillation recurrence following ablation: a retrospective study. Cardiovasc Diabetol. 2024;23(1):87.

Nayak SS, Kuriyakose D, Polisetty LD, et al. Diagnostic and prognostic value of triglyceride glucose index: a comprehensive evaluation of meta-analysis. Cardiovasc Diabetol. 2024 Aug 23;23(1):310.

Xu Y, Wang J, Zhou Z, et al. Multimodal prognostic model for predicting chronic coronary artery disease in patients without obstructive sleep apnea syndrome. Arch Med Res. 2024 Jan;55(1):102926.

Chan YH, Chang GJ, Lai YJ, et al. Atrial fibrillation and its arrhythmogenesis associated with insulin resistance. Cardiovasc Diabetol,2019;1:125.

Bell DSH, Goncalves E. Atrial fibrillation and type 2 diabetes: prevalence, etiology, pathophysiology and effect of anti-diabetic therapies. Diabetes Obes Metab. 2019;2:210–7.

Article  Google Scholar 

Chen LY, Chung MK, Allen LA, et al. Atrial fibrillation burden: moving beyond atrial fibrillation as a binary entity: a scientific statement from the American Heart Association. Circulation. 2018;137(20):e623–44.

Article  PubMed  PubMed Central  Google Scholar 

Soliman EZ, Prineas RJ, Case LD, et al. Atrial fibrillation and cardiovascular disease mortality in the elderly. J Am Coll Cardiol. 2009;54(7):529–35.

Google Scholar 

Cadby G, McArdle N, Briffa T, et al. Severity of OSA is an independent predictor of incident atrial fibrillation hospitalization in a large sleep-clinic cohort. Chest. 2015;4:945–952.

McNicholas WT, Bonsigore MR, Management Committee of EU COST ACTION B26. Sleep apnoea as an independent risk factor for cardiovascular disease: current evidence, basic mechanisms and research priorities. Eur Respir J. 2007;1:156–78.

Traaen GM, Aakerøy L, Hunt TE, et al. Effect of continuous positive airway pressure on arrhythmia in atrial fibrillation and sleep apnea: a randomized controlled trial. Am J Respir Crit Care Med. 2021;204(5):573–82.

Article  PubMed  Google Scholar 

Hunt TE, Traaen GM, Aakerøy L, et al. Effect of continuous positive airway pressure therapy on recurrence of atrial fibrillation after pulmonary vein isolation in patients with obstructive sleep apnea: a randomized controlled trial. Heart Rhythm. 2022;19(9):1433–41.

Article  PubMed  Google Scholar 

Wang W, Yan Y, Guo Z, et al. Suboptimal Health Study Consortium and European Association for Predictive, Preventive and Personalised Medicine. All around suboptimal health - a joint position paper of the Suboptimal Health Study Consortium and European Association for Predictive, Preventive and Personalised Medicine. EPMA J. 2021 Sep 13;12(4):403–433.

Kitamura T, Miyazaki S, Sulaiman HB, et al. Insomnia and obstructive sleep apnea as potential triggers of dementia: is personalized prediction and prevention of the pathological cascade applicable? EPMA J. 2020;11(3):355–65.

Article  PubMed  PubMed Central  Google Scholar 

Liu H, Shu F, Ji C, et al. Clarifying sleep characteristics and analyzing risk factors of sleep disorders to promote a predictive, preventive, and personalized medicine in patients with burn scars. EPMA J. 2023;14(1):131–42.

Article  PubMed  PubMed Central  Google Scholar 

Golubnitschaja O, Liskova A, Koklesova L, et al. Caution, “normal” BMI: health risks associated with potentially masked individual underweight-EPMA position paper 2021. EPMA J. 2021;12(3):243–64.

Article  PubMed  PubMed Central  Google Scholar 

Midelet A, Bailly S, Tamisier R, et al. Hidden Markov model segmentation to demarcate trajectories of residual apnoea-hypopnoea index in CPAP-treated sleep apnoea patients to personalize follow-up and prevent treatment failure. EPMA J. 2021;12(4):535–44.

Article  PubMed  PubMed Central  Google Scholar 

Comments (0)

No login
gif