Targeting astrocyte-monocyte-neuron crosstalk in spinal cord injury: therapeutic insights from methyl gallate

Anjum A, Yazid MD, Fauzi Daud M, Idris J, Ng AMH, Selvi Naicker A, et al. Spinal cord injury: pathophysiology, multimolecular interactions, and underlying recovery mechanisms. IJMS. 2020;21:7533.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhao C, Bao S-S, Xu M, Rao J-S. Importance of brain alterations in spinal cord injury. Sci Prog. 2021;104:368504211031117. https://doi.org/10.1177/00368504211031117.

Article  PubMed  Google Scholar 

Mautes AE, Weinzierl MR, Donovan F, Noble LJ. Vascular events after spinal cord injury: contribution to secondary pathogenesis. Phys Ther. 2000;80:673–87.

Article  CAS  PubMed  Google Scholar 

LaPlaca MC, Simon CM, Prado GR, Cullen DK. CNS injury biomechanics and experimental models. Prog Brain Res. 2007;161:13–26.

Article  CAS  PubMed  Google Scholar 

Zhang N, Yin Y, Xu S-J, Wu Y-P, Chen W-S. Inflammation & apoptosis in spinal cord injury. Indian J Med Res. 2012;135:287–96.

CAS  PubMed  PubMed Central  Google Scholar 

Alizadeh A, Dyck SM, Karimi-Abdolrezaee S. Traumatic spinal cord injury: an overview of pathophysiology, models and acute injury mechanisms. Front Neurol. 2019;10:282. https://doi.org/10.3389/fneur.2019.00282.

Article  PubMed  PubMed Central  Google Scholar 

Hellenbrand DJ, Quinn CM, Piper ZJ, Morehouse CN, Fixel JA, Hanna AS. Inflammation after spinal cord injury: a review of the critical timeline of signaling cues and cellular infiltration. J Neuroinflammation. 2021;18:284. https://doi.org/10.1186/s12974-021-02337-2.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wu D-M, Zheng Z-H, Wang S, Wen X, Han X-R, Wang Y-J, et al. Association between plasma macrophage migration inhibitor factor and deep vein thrombosis in patients with spinal cord injuries. Aging. 2019;11:2447–56.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sánchez-Ventura J, Amo-Aparicio J, Navarro X, Penas C. Correction to: BET protein inhibition regulates cytokine production and promotes neuroprotection after spinal cord injury. J Neuroinflammation. 2022;19:230. https://doi.org/10.1186/s12974-022-02590-z.

Article  PubMed  PubMed Central  Google Scholar 

Zhang Q, Zhu C, Li X, Shi Y, Zhang Z. CCR2 downregulation attenuates spinal cord injury by suppressing inflammatory monocytes. Synapse. 2020;75:e22191. https://doi.org/10.1002/syn.22191.

Article  CAS  PubMed  Google Scholar 

Kong F-Q, Zhao S-J, Sun P, Liu H, Jie J, Xu T, et al. Macrophage MSR1 promotes the formation of foamy macrophage and neuronal apoptosis after spinal cord injury. J Neuroinflammation. 2020;17:62. https://doi.org/10.1186/s12974-020-01735-2.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vaucher J, Keating BJ, Lasserre AM, Gan W, Lyall DM, Ward J, et al. Cannabis use and risk of schizophrenia: a mendelian randomization study. Mol Psychiatry. 2017;23:1287–92.

Article  PubMed  PubMed Central  Google Scholar 

Sun Y, Liu Y, Dian Y, Zeng F, Deng G, Lei S. Association of glucagon-like peptide-1 receptor agonists with risk of cancers-evidence from a drug target mendelian randomization and clinical trials. Int J Surg. 2024;110:4688–94.

Article  PubMed  PubMed Central  Google Scholar 

Elham A, Arken M, Kalimanjan G, Arkin A, Iminjan M. A review of the phytochemical, pharmacological, pharmacokinetic, and toxicological evaluation of quercus infectoria galls. J Ethnopharmacol. 2021;273:113592.

Article  CAS  PubMed  Google Scholar 

Yap KM, Sekar M, Seow LJ, Gan SH, Bonam SR, Mat Rani NNI, et al. Mangifera indica (mango): a promising medicinal plant for breast cancer therapy and understanding its potential mechanisms of action. BCTT. 2021;13:471–503.

Article  Google Scholar 

Hamed ANE, Abouelela ME, El Zowalaty AE, Badr MM, Abdelkader MSA. Chemical constituents from Carica papaya Linn. leaves as potential cytotoxic, EGFRwt and aromatase (CYP19A) inhibitors; a study supported by molecular docking. RSC Adv. 2022;12:9154–62.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tian W, Han X-G, Liu Y-J, Tang G-Q, Liu B, Wang Y-Q, et al. Intrathecal epigallocatechin gallate treatment improves functional recovery after spinal cord injury by upregulating the expression of BDNF and GDNF. Neurochem Res. 2013;38:772–9.

Article  CAS  PubMed  Google Scholar 

Ahadi S, Zargari M, Khalatbary AR. Assessment of the neuroprotective effects of (-)-epigallocatechin-3-gallate on spinal cord ischemia-reperfusion injury in rats. J Spinal Cord Med. 2019;44:725–32.

Article  PubMed  PubMed Central  Google Scholar 

Kim SJ, Jin M, Lee E, Moon TC, Quan Z, Yang JH, et al. Effects of methyl gallate on arachidonic acid metabolizing enzymes: Cyclooxygenase-2 and 5-lipoxygenase in mouse bone marrow-derived mast cells. Arch Pharm Res. 2006;29:874–8.

Article  CAS  PubMed  Google Scholar 

Correa LB, Pádua TA, Seito LN, Costa TEMM, Silva MA, Candéa ALP, et al. Anti-inflammatory effect of methyl gallate on experimental arthritis: inhibition of neutrophil recruitment, production of inflammatory mediators, and activation of macrophages. J Nat Prod. 2016;79:1554–66.

Article  CAS  PubMed  Google Scholar 

Chae H-S, Kang O-H, Choi J-G, Oh Y-C, Lee Y-S, Brice O-O, et al. Methyl gallate inhibits the production of interleukin-6 and nitric oxide via down-regulation of extracellular-signal regulated protein kinase in RAW 264.7 cells. Am J Chin Med. 2010;38:973–83.

Article  CAS  PubMed  Google Scholar 

Hsieh T-J, Liu T-Z, Chia Y-C, Chern C-L, Lu F-J, Chuang M, et al. Protective effect of methyl gallate from Toona sinensis (Meliaceae) against hydrogen peroxide-induced oxidative stress and DNA damage in MDCK cells. Food Chem Toxicol. 2004;42:843–50.

Article  CAS  PubMed  Google Scholar 

Ryu B-I, Kim K-T. Antioxidant activity and protective effect of methyl gallate against t-BHP induced oxidative stress through inhibiting ROS production. Food Sci Biotechnol. 2022;31:1063–72.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Prakashkumar N, Sivamaruthi BS, Chaiyasut C, Suganthy N. Decoding the neuroprotective potential of methyl gallate-loaded starch nanoparticles against beta amyloid-induced oxidative stress-mediated apoptosis: an in vitro study. Pharmaceutics. 2021;13:299.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gao L, Peng Y, Xu W, He P, Li T, Lu X, et al. Progress in stem cell therapy for spinal cord injury. Stem Cells Int. 2020;2020:1–16.

Google Scholar 

Wei H, Wu X, You Y, Duran RC-D, Zheng Y, Narayanan KL, et al. Systematic analysis of purified astrocytes after SCI unveils Zeb2os function during astrogliosis. Cell Rep. 2021;34:108721.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Syková E, Homola A, Mazanec R, Lachmann H, Konrádová ŠL, Kobylka P, et al. Autologous bone marrow transplantation in patients with subacute and chronic spinal cord injury. Cell Transplant. 2006;15:675–87.

Article  PubMed  Google Scholar 

Lee H-G, Lee J-H, Flausino LE, Quintana FJ. Neuroinflammation: an astrocyte perspective. Sci Transl Med. 2023;15:eadi7828. https://doi.org/10.1126/scitranslmed.adi7828.

Article  CAS  PubMed  Google Scholar 

O’Shea TM, Burda JE, Sofroniew MV. Cell biology of spinal cord injury and repair. J Clin Invest. 2017;127:3259–70.

Article  PubMed  PubMed Central  Google Scholar 

Donnelly DJ, Popovich PG. Inflammation and its role in neuroprotection, axonal regeneration and functional recovery after spinal cord injury. Exp Neurol. 2008;209:378–88.

Comments (0)

No login
gif