Synthesis and crystal structure of the R3Fe0.1Ga1.6Se7 selenides (R – La, Ce, Pr, Nd)

K. Mitchell, J. Ibers, Rare-Earth Transition-Metal Chalcogenides, Chem. Rev., 102(6), 1929 (2002); https://doi.org/10.1021/cr010319h.

J.C. Bunzli, V. Pecharsky, Handbook on the Physics and Chemistry of Rare Earths, Elsevier Science Publishers B, 50, (2016).

P. Van Calcar, P. Dorhout, A study of new rare earth metal group 13 chalcogenides: structural chemistry and optical properties, Mater. Sci. Forum, 315, 322 (1999); https://doi.org/10.4028/www.scientific.net/MSF.315-317.322.

N.M. Blashko, O.V. Marchuk, O.V. Smitiukh, A.O. Fedorchuk, Krystalichna struktura La3Pb0.1Ga1.6Se7 та Pr3Pb0.1Ga1.6Se7. Visnyk. Uzh. nats. univer. Seriya «Khimiya», 2(48), 10 (2022); https://doi.org/10.24144/2414-0260.2022.2.10-15.

N.M. Blashko, O.V. Smitiukh, O.V. Marchuk, The crystal structure of La3Pb0.1Ga1.6S7 and La3Pb0.1Ga1.6S7 compounds, Physics and chemistry of solid state, 23(1), 96 (2022); https://doi.org/10.15330/pcss.23.1.96-100.

N.M. Blashko, O.V. Marchuk, A.O. Fedorchuk, The crystal structure of R3Fe0.1Ga1.6S7 chalcogenides (La, Ce, Pr and Tb), Physics and chemistry of solid state, 25(4), 677 (2024); https://doi.org/10.15330/pcss.25.4.677-683.

B. Rudyk, S. Stoyko, A. Oliynyk, A. Mar, Rare-earth transition-metal gallium chalcogenides RE3MGaCh7

(M = Fe, Co, Ni; Ch = S, Se), J. Solid State Chem., 210, 79 (2014); https://doi.org/10.1016/j.jssc.2013.11.003.

W.D. Yao, W. Zhou, W. Liu., S.P. Guo, Polysubstitution Induced Centrosymmetric-to-Noncentrosymmetric Structural Transformation and Nonlinear-Optical Behavior: The Case of Na0.45Ag0.55Ga3Se5, Inorg. Chem., 63(14), 6116 (2024); https://doi.org/10.1021/acs.inorgchem.4c00785.

P. Feng, J.X. Zhang, M.Y. Ran, X.T. Wu, H. Lin, Q.L. Zhu, Rare-earth-based chalcogenides and their derivatives: an encouraging IR nonlinear optical material candidate. Chem. Sci., 15(16), 5869 (2024); https://doi.org/10.1039/d4sc00697f.

L. Dong, S. Zhang, P. Gong, L. Kang, Zh. Lin. Evaluation and prospect of Mid-Infrared nonlinear optical materials in f0 rare earth (RE = Sc, Y, La) chalcogenides, Coordination Chemistry Reviews, 509, 215805 (2024); https://doi.org/10.1016/j.ccr.2024.215805.

H.J. Zhao, Synthesis, Crystal and Electronic Structure, and Optical Property of the Quaternary Selenide: La3Sb0.33SiSe7, Z. Anorg. Allg. Chem., 641, 917 (2015); http://dx.doi.org/10.1002/zaac.201500044.

A. Fedorchuk, Yu. Grin, Handbook on the Physics and Chemistry of Rare Earths, 81(2018); https://doi.org/10.1016/bs.hpcre.2018.04.002.

Yu. Grin, L. Akselrud, WinCSD: Software package for crystallographic calculations (Version 4), J. Appl. Cryst., 47(2), 803 (2014); https://doi:10.1107/s1600576714001058.

K. Momma, F. Izumi, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data, J. Appl. Cryst., 44(6), 1272 (2011); https://doi:10.1107/S0021889811038970.

M. Patrie, M. Guittard, Chimie minerale. Sur les composes du type Ce6Al10/3S14, C. R. Acad. Sci., C, 268, 1136 (1969).

G. Kh. Efendiev, Z. Sh. Karaev, I.O. Nasibov, About the interaction of selenides A(III)2B(VI)3 of neodymium and gallium, Azerb. Khim. Zh., 4, 1136 (1964).

M. Guittard, M. Julien-Pouzol, Les composes hexagonaux de type La3CuSiS7, Bull. Soc. Chim. Fr., 3, 2207 (1972).

J. Emsley, The Elements. Oxford University Press; 2nd edition (October 10, 1991). 264 p.

A.F. Holleman, E. Wiberg, N. Wiberg, Lehrbuch der Anorganischen Chemie. Berlin: Walter de Gruyter, 2007, 2002-2005.

Comments (0)

No login
gif