Spectral and Temperature Properties of Solar Cells Based on Cadmium Telluride Thin-Films

U. Manimaran, & M.S. Dangate, A review on conducting materials in CDTE photovoltaic cells. ACS Omega, 10(23), 23858 (2025); https://doi.org/10.1021/acsomega.5c01030.

B.S. Dzundza, I.T. Kohut, V.I. Holota, L.V. Turovska, M.V. Deichakivskyi, Principles of construction of hybrid microsystems for biomedical applications Physics and Chemistry of Solid State, 23(4), 776 (2022); https://doi.org/10.15330/pcss.23.4.776-784.

Cadmium Telluride Photovoltaics Perspective Paper. Published January 16, 2025. URL: https://www.energy.gov/sites/default/files/2025-01/DOE%20SETO%20CdTe%20Photovoltaics%20Perspective%20Paper.pdf

S. Banerjee, High efficiency CdTe/CdS thin film solar cell. International Journal of Engineering Research & Technology, 4. (2015); https://doi.org/10.17577/IJERTV4IS090669.

M. Asaduzzaman, A. N. Bahar, M.R. Bhuiyan, & M.A. Habib, Impacts of temperature on the performance of cdte based thin-film solar cell, IOP Conf. Ser. Mater. Sci. Eng, 225 (2017); https://doi.org/10.1088/1757-899X/225/1/012274.

P. Khaledi, M. Behboodnia, & M. Karimi, Simulation and optimization of temperature effect in solar cells CdTe with back connection Cu2O. International Journal of Optics, 2022(1), 1207082 (2022); https://doi.org/10.1155/2022/1207082.

S. Wang, L. Wu, X. Hao, J. Zhang, T. Mallick, & L. Xie, Photovoltaic Characteristics of Low Concentration CdTe Solar Cells. In IOP Conference Series: Materials Science and Engineering 556 (1), 012005 (2019); https://doi.org/10.1088/1757-899X/556/1/012005.

A.I. Kashuba, I.V. Semkiv, B. Andriyevsky, H.A. Ilchuk, & N.T. Pokladok, Structural and morphological properties of CdSe1-xSx thin films obtained by the method of high-frequency magnetron sputtering. Physics and Chemistry of Solid State, 25(1), 40 (2024); https://doi.org/10.15330/pcss.25.1.40-44.

B.S. Dzundza, O.B. Kostyuk, T. Mazur, Software and Hardware Complex for Study of Photoelectric Properties of Semiconductor Structures, 39th International Conference on Electronics and Nanotechnology (ELNANO). –635 (2019); https://doi.org/10.1109/ELNANO.2019.8783544.

R. Peter Michael, E. Danvers Johnston, Wilfrido Moreno, A conversion guide: solar irradiance and lux illuminance, Journal of Measurements in Engineering. 8(4), 153 (2020); https://doi.org/10.21595/jme.2020.21667.

V. Fedenko, B. Dzundza, M. Pavlyuk, O. Poplavskyi, Design of a complex dual-axis solar tracker with an integrated solar PV monitoring system. Eastern-European Journal of Enterprise Technologies, 3 (8 (135)), 6 (2025); https://doi.org/10.15587/1729-4061.2025.332548.

SCAPS software. Web source: https://scaps.elis.ugent.be/.

G. Kartopu, B.L.Williams, V. Zardetto, A.K. Gürlek, A.J. Clayton, S. Jones, & S.J.C. Irvine, Enhancement of the photocurrent and efficiency of CdTe solar cells suppressing the front contact reflection using a highly-resistive ZnO buffer layer. Solar Energy Materials and Solar Cells, 191, 78 (2019); https://doi.org/10.1016/j.solmat.2018.11.002.

Z. R. Zapukhlyak, L. I. Nykyruy, G. Wisz, V. M. Rubish, V.V. Prokopiv, M.O. Halushchak, R.S. Yavorskyi, SCAPS simulation of ZnO/CdS/CdTe/CuO heterostructure for photovoltaic application. Physics and Chemistry of Solid State, 21(4), 660 (2020); https://doi.org/10.15330/pcss.21.4.660-668.

S. Tobbeche, S. Kalache, M. Elbar, M.N. Kateb, & M. R. Serdouk, Improvement of the CIGS solar cell performance: structure based on a ZnS buffer layer. Optical and Quantum Electronics, 51, 1 (2019); https://doi.org/10.1007/s11082-019-2000-z.

P. Sawicka-Chudy, Z. Starowicz, G. Wisz, R. Yavorskyi, Z. Zapukhlyak, M. Bester, ... & M. J. M. R. E. Cholewa, Simulation of TiO2/CuO solar cells with SCAPS-1D software. Materials Research Express, 6(8), 085918 (2019); https://doi.org/10.1088/2053-1591/ab22aa.

G. Wisz, P. Sawicka-Chudy, M. Sibiński, D. Płoch, M. Bester, M. Cholewa, ... & M. Ruszała, TiO2/CuO/Cu2O photovoltaic nanostructures prepared by DC reactive magnetron sputtering. Nanomaterials, 12(8), 1328 (2022); https://doi.org/10.3390/nano12081328.

L. I. Nykyruy, R.S. Yavorskyi, Z.R. Zapukhlyak, G. Wisz, & P. Potera, Evaluation of CdS/CdTe thin film solar cells: SCAPS thickness simulation and analysis of optical properties. Optical Materials, 92, 319 (2019); https://doi.org/10.1016/j.optmat.2019.04.029.

H.A. Mohamed, Dependence of efficiency of thin-film CdS/CdTe solar cell on optical and recombination losses. Journal of applied Physics, 113(9) (2013); https://doi.org/10.1063/1.4794201.

M.A. Scarpulla, B. McCandless, A.B. Phillips, Y. Yan, M.J. Heben, C. Wolden, ... & S.M. Hayes, CdTe-based thin film photovoltaics: Recent advances, current challenges and future prospects. Solar Energy Materials and Solar Cells, 255, 112289 (2023); https://doi.org/10.1016/j.solmat.2023.112289.

U. Manimaran, & M. Shrinivas Dangate, A Review on Conducting Materials in CdTe Photovoltaic Cells. ACS omega. 10(23), 23858 (2025); https://doi.org/10.1021/acsomega.5c01030.

G. Kartopu, B. L. Williams, V. Zardetto, A.K. Gürlek, A.J. Clayton, S. Jones, ... & S.J.C. Irvine, Enhancement of the photocurrent and efficiency of CdTe solar cells suppressing the front contact reflection using a highly-resistive ZnO buffer layer. Solar Energy Materials and Solar Cells, 191, 78 (2019); https://doi.org/10.1016/j.solmat.2018.11.002.

L. Hafaifa, M. Maache, Z. Allam, & A. Zebeir, Simulation and performance analysis of CdTe thin film solar cell using different Cd-free zinc chalcogenide-based buffer layers. Results in Optics, 14, 100596 (2024); https://doi.org/10.1016/j.rio.2023.100596.

A. Salavei, I. Rimmaudo, F. Piccinelli, & A. Romeo, Influence of CdTe thickness on structural and electrical properties of CdTe/CdS solar cells. Thin Solid Films, 535, 257(2013); https://doi.org/10.1016/j.tsf.2012.11.121.

Comments (0)

No login
gif