Сurrent trends in thermoelectric technologies, prospects for thermoregulation

M. A. Akrouch, K. Chahine, J. Faraj, F. Hachem, C. Castelain, and M. Khaled, Advancements in cooling techniques for enhanced efficiency of solar photovoltaic panels: A detailed comprehensive review and innovative classification, Energy and Built Environment, Nov. (2023); https://doi.org/10.1016/J.ENBENV.2023.11.002.

B.S. Dallan, J. Schumann, and F.J. Lesage, Performance evaluation of a photoelectric–thermoelectric cogeneration hybrid system, Solar Energy, 118, 276 (2015); https://doi.org/10.1016/J.SOLENER.2015.05.034.

S. Lv et al., Design and comprehensive study of a novel radiative cooling-thermoelectric-photovoltaic (RC-TE-PV) hybrid system based on spectral splitting, (2024); https://ssrn.com/abstract=4661656.

K. Teffah and Y. Zhang, Modeling and experimental research of hybrid PV-thermoelectric system for high concentrated solar energy conversion, Solar Energy, 157, 10 (2017); https://doi.org/10.1016/J.SOLENER.2017.08.017.

A. H. Elsheikh, S. W. Sharshir, M. E. Mostafa, F. A. Essa, and M. K. Ahmed Ali, Applications of nanofluids in solar energy: A review of recent advances, Renewable and Sustainable Energy Reviews, 82, 3483 (2018); https://doi.org/10.1016/j.rser.2017.10.108.

G. Fabbri and M. Greppi, Numerical modeling of a new integrated PV-TE cooling system and support, Results in Engineering, 11, 100240 (2021); https://doi.org/10.1016/J.RINENG.2021.100240.

M. Elgendi, A. E. Kabeel, and F. A. Essa, Improving the solar still productivity using thermoelectric materials: A review, Alexandria Engineering Journal, 65, 963 (2023); https://doi.org/10.1016/J.AEJ.2022.10.011.

A. Lashin, Analysis of thermal performance a heat pipe for concentrated photovoltaic cooling, J Radiat Res Appl Sci, 16, (3), 100606 (2023); https://doi.org/10.1016/J.JRRAS.2023.100606.

H. M. Maghrabie et al., Numerical simulation of heat pipes in different applications, International Journal of Thermofluids, 16, 100199 (2022); https://doi.org/10.1016/J.IJFT.2022.100199.

J.R. Segnon and H. Njoku, A Thermoelectric Heat Pumping Solar Air Heater, (2021); https://www.researchgate.net/publication/359214530.

Z. Wu, G. Xie, F. Gao, W. Chen, Q. Zheng, and Y. Liu, Experimental study of a self-cooling concentrated photovoltaic (CPV) system using thermoelectric modules, Energy Convers Manag, 299, 117858 (2024); https://doi.org/10.1016/J.ENCONMAN.2023.117858.

T. Liao, Q. He, Q. Xu, Y. Dai, C. Cheng, and M. Ni, Coupling properties and parametric optimization of a photovoltaic panel driven thermoelectric refrigerators system, Energy, 220, 119798 (2021); https://doi.org/10.1016/J.ENERGY.2021.119798.

K. T. Park et al., Lossless hybridization between photovoltaic and thermoelectric devices, Sci Rep, 3, (2013); https://doi.org/10.1038/srep02123.

S.Y. Wu, T. Wang, L. Xiao, and Z. G. Shen, Effect of cooling channel position on heat transfer characteristics and thermoelectric performance of air-cooled PV/T system, Solar Energy, 180, 489 (2019); https://doi.org/10.1016/J.SOLENER.2019.01.043.

W.G.J. H. M. van Sark, Feasibility of photovoltaic – Thermoelectric hybrid modules, Appl Energy, 88(8), 2785 (2011); https://doi.org/10.1016/J.APENERGY.2011.02.008.

G.T.V. Mooko, P.A. Hohne, and K. Kusakana, Enhancing photovoltaic operation system efficiency and cost-effectiveness through optimal control of thermoelectric cooling, Solar Energy Materials and Solar Cells, 273, 112937 (2024); https://doi.org/10.1016/J.SOLMAT.2024.112937.

O. Rejeb, S. Shittu, C. Ghenai, G. Li, X. Zhao, and M. Bettayeb, Optimization and performance analysis of a solar concentrated photovoltaic-thermoelectric (CPV-TE) hybrid system, Renew Energy, 152, 1342 (2020); https://doi.org/10.1016/J.RENENE.2020.02.007.

Z. Liu, L. Zhang, G. Gong, H. Li, and G. Tang, Review of solar thermoelectric cooling technologies for use in zero energy buildings, Energy Build, 102, 207 (2015), https://doi.org/10.1016/j.enbuild.2015.05.029.

C. Lorenzo and L. Narvarte, Performance indicators of photovoltaic heat-pumps, Heliyon, 5(10), e02691 ( 2019); https://doi.org/10.1016/J.HELIYON.2019.E02691.

M. Jradi, N. Ghaddar, and K. Ghali, Optimized Operation of a Solar-Driven Thermoelectric Dehumidification System for Fresh Water Production, (2012).

A. Kane and V. Verma, Performance Enhancement of Building Integrated Photovoltaic Module using Thermoelectric Cooling, 3(2) (2013).

I.A. Okanimba Tedah, F. Maculewicz, D. E. Wolf, and R. Schmechel, Thermoelectrics versus thermophotovoltaics: Two approaches to convert heat fluxes into electricity, J Phys D Appl Phys, 52(27), (2019); https://doi.org/10.1088/1361-6463/ab1833.

N. Wang, L. L. Ni, A. Wang, H. Z. Jia, and L. Zuo, Design and Implementation of Hybrid Photovoltaic-thermoelectric System with Intelligent Power Supply Management, IFAC-PapersOnLine, 55(37), 164 (2022); https://doi.org/10.1016/J.IFACOL.2022.11.178.

F. Alkilani, O. Nemraoui, and F. Ismail, Performance evaluation of solar still integrated with thermoelectric heat pump system, AIMS Energy, 11(1), 47 (2023); https://doi.org/10.3934/energy.2023003.

I. Erro, P. Aranguren, I. Alzuguren, D. Chavarren, and D. Astrain, Experimental analysis of one and two-stage thermoelectric heat pumps to enhance the performance of a thermal energy storage, Energy, 285, 129447 (2023), https://doi.org/10.1016/J.ENERGY.2023.129447.

S. Jugsujinda, A. Vora-Ud, and T. Seetawan, Analyzing of Thermoelectric Refrigerator Performance, Procedia Eng, 8, 154 (2011); https://doi.org/.1016/J.PROENG.2011.03.028.

A. Allouhi, A. Boharb, A. Jamil, A. A. Msaad, A. Benbassou, and T. Kousksou, Simulation of a thermoelectric heating system for small-size office buildings in cold climates, Proceedings of 2015 IEEE International Renewable and Sustainable Energy Conference, IRSEC 2015, (2016); https://doi.org/10.1109/IRSEC.2015.7455025.

Y. Tang, D. Jin, Z. Wang, and F. Han, The extreme high cooling capacity thermoelectric cooler optimal design for kilowatts scale thermoelectric air-conditioner of high-speed railway carriage, Energy and Built Environment, (2023); https://doi.org/10.1016/J.ENBENV.2023.11.011.

Q. Xu, S. Zhang, and S. Riffat, Ecopump: A novel thermoelectric heat pump/heat recovery ventilator system for domestic building applications, International Journal of Low-Carbon Technologies, 17, 611 (2022); https://doi.org/10.1093/ijlct/ctac040.

M. Trancossi, G. Cannistraro, and J. Pascoa, Thermoelectric and solar heat pump use toward self sufficient buildings: The case of a container house, Thermal Science and Engineering Progress, 18, (2020); https://doi.org/10.1016/j.tsep.2020.100509.

D. Tikhomirov, A. Khimenko, A. Kuzmichev, V. Bolshev, G. Samarin, and I. Ignatkin, Local Heating through the Application of a Thermoelectric Heat Pump for Prenursery Pigs,” Agriculture (Switzerland), 13(5), (2023); https://doi.org/10.3390/agriculture13050948.

E. Ibáñez-Puy, C. Martín-Gómez, J. Bermejo-Busto, and A. Zuazua-Ros, Thermal and energy performance assessment of a thermoelectric heat pump integrated in an adiabatic box, Appl Energy, 228, 681 (2018); https://doi.org/10.1016/J.APENERGY.2018.06.097.

X. Fan, H. Sun, Z. Yuan, Z. Li, R. Shi, and N. Razmjooy, Multi-objective optimization for the proper selection of the best heat pump technology in a fuel cell-heat pump micro-CHP system, Energy Reports, 6, 325 (2020); https://doi.org/10.1016/J.EGYR.2020.01.009.

I. Erro, P. Aranguren, F. J. Sorbet, I. Bonilla-Campos, and D. Astrain, Enhancement of the Power-to-Heat Energy Conversion Process of a Thermal Energy Storage Cycle through the use of a Thermoelectric Heat Pump, Appl Therm Eng, 246, 122923 (2024); https://doi.org/10.1016/J.APPLTHERMALENG.2024.122923.

Y. Wu, H. Sun, M. Duan, B. Lin, H. Zhao, and C. Liu, Novel Radiation-Adjustable Heating Terminal Based on Flat Heat Pipe Combined with Air Source Heat Pump, Engineering, 20, 192 (2023); https://doi.org/10.1016/J.ENG.2021.09.019.

I. Neya, J. Ramousse, I. Neya, J. Ramousse, and M. Perier-Muzet, Thermodynamic analysis of water/water thermoelectric heat pumps: design considerations Maxime Perier-Muzet Université de Perpignan Entropy analysis of water/water thermoelectric heat pumps: design considerations,” (2015); https://www.researchgate.net/publication/281857014.

R. Buchalik and G. Nowak, Technical and economic analysis of a thermoelectric air conditioning system, Energy Build, 268, 112168 (2022); https://doi.org/10.1016/J.ENBUILD.2022.112168.

M. Cattin, S. Jonnalagedda, S. Makohliso, and K. Schönenberger, The status of refrigeration solutions for last mile vaccine delivery in low-income settings, Vaccine X, 11, 100184 (2022); https://doi.org/10.1016/J.JVACX.2022.100184.

D. A. Heavner, Optimization of the heat pumping capacity of a thermoelectric heat pump heat pump, Rochester Institute of Technology, (1994); https://scholarworks.rit.edu/theses.

J. Zhao, X. Zhou, Z. Gao, Y. Ma, and Z. Qin, A novel global maximum power point tracking strategy (GMPPT) based on optimal current control for photovoltaic systems adaptive to variable environmental and partial shading conditions, Solar Energy, 144, 767 (2017); https://doi.org/10.1016/j.solener.2017.02.017.

T. Ibrahim, M. Abou Akrouch, F. Hachem, M. Ramadan, H. S. Ramadan, and M. Khaled, Cooling Techniques for Enhanced Efficiency of Photovoltaic Panels—Comparative Analysis with Environmental and Economic Insights, Multidisciplinary Digital Publishing Institute (MDPI); 01, (2024); https://doi.org/10.3390/en17030713.

S. Usón, J. Royo, and P. Canalís, Integration of thermoelectric generators in a biomassboiler: Experimental tests and study of ash deposition effect, Renew Energy, 214, 395, (2023); https://doi.org/10.1016/J.RENENE.2023.05.100.

R. Buchalik and G. Nowak, Technical and economic analysis of a thermoelectric air conditioning system, Energy Build, 268, 112168 (2022); https://doi.org/10.1016/J.ENBUILD.2022.112168.

N. P. Bayendang, V. Balyan, and M. T. Kahn, The question of thermoelectric devices (TEDs) in/efficiency—a practical examination considering thermoelectric coolers (TECs), Results in Engineering, 21, 101827 (2024); https://doi.org/10.1016/J.RINENG.2024.101827.

X. Ma, Y. Zhang, Z. Han, N. Zang, and Z. Liu, Performance modelling on a thermoelectric air conditioning system using high power heat sinks and promoting waste heat utilization, Energy, 268, 126612 (2023); https://doi.org/10.1016/J.ENERGY.2023.126612.

A. K. Mainil, A. Aziz, and M. Akmal, Portable Thermoelectric Cooler Box Performance with Variation of Input Power and Cooling Load, Aceh International Journal of Science and Technology, 7 (2), 85 (2018); https://doi.org/10.13170/aijst.7.2.8722.

Y. Z. Tan, L. Han, N. G. P. Chew, W. H. Chow, R. Wang, and J. W. Chew, Membrane distillation hybridized with a thermoelectric heat pump for energy-efficient water treatment and space cooling, Appl Energy, 231, 1079 (2018); https://doi.org/10.1016/j.apenergy.2018.09.196.

W. Zhu, D. Chen, J. Shi, J. Zhang, Z. Xu, and C. Li, Efficiency Enhancement Strategies for Water-Source Thermoelectric Heat Pump Modules,” (2023); https://doi.org/10.21203/rs.3.rs-3362530/v1.

L. R. Erickson and E. K. Ungar, Vapor compression and thermoelectric heat pumps for the Cascade Distillation Subsystem: Design and experiment, AIAA SPACE 2013 Conference and Exposition, (2013); https://doi.org/10.2514/6.2013-5397.

Z. G. Chen, G. Hana, L. Yanga, L. Cheng, and J. Zou, Nanostructured thermoelectric materials: Current research and future challenge, Progress in Natural Science: Materials International, 22 (6); 535(2012); https://doi.org/10.1016/j.pnsc.2012.11.011.

A. Trzaskowska and B. Mroz, Surface phonons in topological insulator Bi2Te3 investigated by Brillouin light scattering,” Sci Rep, 10(1), (2020), https://doi.org/10.1038/s41598-020-68690-z.

X. Zhang and Y. Pei, Manipulation of charge transport in thermoelectrics, NPJ Quantum Mater, 2(1), (2017); https://doi.org/10.1038/s41535-017-0071-2.

M. K. Hasan, M. M. Haque, M. A. Üstüner, H. Mamur, and M. R. A. Bhuiyan, Optimizing the performance of Bi2Te3 TECs through numerical simulations using COMSOL multiphysics, Journal of Alloys and Metallurgical Systems, 5, (2024); https://doi.org/10.1016/j.jalmes.2024.100056.

Y. Lyu, A. R. M. Siddique, S. H. Majid, M. Biglarbegian, S. A. Gadsden, and S. Mahmud, Electric vehicle battery thermal management system with thermoelectric cooling, Energy Reports, 5, 822 (2019); https://doi.org/10.1016/j.egyr.2019.06.016.

Y. Lyu, A. R. M. Siddique, S. A. Gadsden, and S. Mahmud, Experimental investigation of thermoelectric cooling for a new battery pack design in a copper holder, Results in Engineering, 10, 100214 (2021); https://doi.org/10.1016/J.RINENG.2021.100214.

X. Hu, Y. Zheng, D. A. Howey, H. Perez, A. Foley, and M. Pecht, Battery warm-up methodologies at subzero temperatures for automotive applications: Recent advances and perspectives, Prog Energy Combust Sci, 77, (2020); https://doi.org/10.1016/j.pecs.2019.100806.

C. W. Zhang, K. J. Xu, L. Y. Li, M. Z. Yang, H. Bin Gao, and S. R. Chen, Study on a battery thermal management system based on a thermoelectric effect, Energies (Basel), 11(2); (2018); https://doi.org/10.3390/en11020279.

C. Zhu, F. Lu, H. Zhang, and C. C. Mi, Robust predictive battery thermal management strategy for connected and automated hybrid electric vehicles based on thermoelectric parameter uncertainty,” IEEE J Emerg Sel Top Power Electron, 6(4); 1796(2018); https://doi.org/10.1109/JESTPE.2018.2852218.

C. Zhang et al., A Li-ion battery thermal management system combining a heat pipe and thermoelectric cooler, Energies (Basel), 13(4); (2020); https://doi.org/10.3390/en13040841.

R. Ma et al., Highly efficient electrocaloric cooling with electrostatic actuation, Science (1979), 357, 15 (2017); https://www.science.org.

M. M. Hamed, A. El-Tayeb, I. Moukhtar, A. Z. El Dein, and E. H. Abdelhameed, A review on recent key technologies of lithium-ion battery thermal management: External cooling systems, Results in Engineering, 16, 100703 (2022); https://doi.org/10.1016/J.RINENG.2022.100703.

A. G. Olabi et al., Battery thermal management systems: Recent progress and challenges, International Journal of Thermofluids, 15, 100171 (2022); https://doi.org/10.1016/J.IJFT.2022.100171.

A. Maiorino, C. Cilenti, F. Petruzziello, and C. Aprea, A review on thermal management of battery packs for electric vehicles, Appl Therm Eng, 238, 122035 (2024); https://doi.org/10.1016/J.APPLTHERMALENG.2023.122035.

F. S. Hwang et al., Review of battery thermal management systems in electric vehicles, Renewable and Sustainable Energy Reviews, 192, 114171 (2024); https://doi.org/10.1016/J.RSER.2023.114171.

L.I. Anatychuk, R.G. Cherkez On the Properties of Permeable Thermoelements. Proc. XXII International conference on thermoelectrics (Montpellier, France) 480- 483 (2003).

R.G. Cherkez Energy characteristics of thermoelement with a developed lateral heat exchange. Journal of Thermoelectricity, 3, 59-68 (2012).

R. Politanskyi, I. Kogut, M. Vistak, Z. Mykytyuk, O. Shymchyshyn, & I. Diskovskyi, Modelling of a multilayer high-tech film for an infrared photodetector (3.5-5.0 μm). Physics and Chemistry of Solid State, 25(4), 757–763 (2024); https://doi.org/10.15330/pcss.25.4.757-763/.

Comments (0)

No login
gif