A Detailed Scientometric Review of Coronavirus Research

Zhou F et al (2020) Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. The Lancet

Google Scholar 

Sohrabi C et al (2020) World health organization declares global emergency: a review of the 2019 novel coronavirus (COVID-19). Int J Surgery

Google Scholar 

Walls AC et al (2020) Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell

Google Scholar 

Zhong N et al (2003) Epidemiology and cause of severe acute respiratory syndrome (SARS) in Guangdong. People’s Republic of China. Lancet 362(9393):1353–1358

Google Scholar 

de Groot RJ et al (2013) Commentary: Middle East respiratory syndrome coronavirus (MERS-CoV): announcement of the Coronavirus Study Group. J Virology 87(14):7790–7792

Google Scholar 

Makino S, Joo M, Makino JK (1991) A system for study of coronavirus mRNA synthesis: a regulated, expressed subgenomic defective interfering RNA results from intergenic site insertion. J Virology 65(11):6031–6041

Google Scholar 

Liu C et al (2020) Research and development on therapeutic agents and vaccines for COVID-19 and related human coronavirus diseases. ACS Central Science 6(3)315–331

Google Scholar 

Gallagher TM (1996) Murine coronavirus membrane fusion is blocked by modification of thiols buried within the spike protein. J Virology 70(7):4683–4690

Google Scholar 

Li F et al (2005) Structure of SARS coronavirus spike receptor-binding domain complexed with receptor. Sci 309(5742):1864–1868

Google Scholar 

Han Y, Yang H (2020) The transmission and diagnosis of 2019 novel coronavirus infection disease (COVID‐19): a Chinese perspective. J Med Virology

Google Scholar 

Paules CI, Marston HD, Fauci AS (2020) Coronavirus infections—more than just the common cold. Jama 323(8):707–708

Google Scholar 

Nikhra V, Exploring pathophysiology of COVID-19 infection: faux espoir and dormant therapeutic options

Google Scholar 

Chen Z-M et al (2020) Diagnosis and treatment recommendations for pediatric respiratory infection caused by the 2019 novel coronavirus. World J Pediatrics 1–7

Google Scholar 

Zhang H et al (2020) Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Medicine 1–5

Google Scholar 

Li Z, Huang Y, Guo X (2020) The brain, another potential target organ, needs early protection from SARS-CoV-2 neuroinvasion. Sci China Life Sci 1

Google Scholar 

Ashour HM et al (2020) Insights into the recent 2019 novel Coronavirus (SARS-CoV-2) in light of past human coronavirus outbreaks. Pathogens 9(3):186

Google Scholar 

Xu Y-H, et al (2020) Clinical and computed tomographic imaging features of novel coronavirus pneumonia caused by SARS-CoV-2. J Inf

Google Scholar 

Yang Y et al (2019) A bibliometric review of laboratory safety in universities. Safety Sci 120:14–24

Google Scholar 

van Eck NJ, Waltman L (2010) Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometric 84(2):523–538

Google Scholar 

Allander T et al (2005) Cloning of a human parvovirus by molecular screening of respiratory tract samples. Proceed Nat Academy Sci United States America 102(36):12891

Google Scholar 

Ksiazek TG et al (2003) A novel coronavirus associated with severe acute respiratory syndrome. New England J Med 348(20):1953–1966

Google Scholar 

Drosten C et al (2003) Identification of a novel coronavirus in patients with severe acute respiratory syndrome. New England J Med 348(20)1967–1976

Google Scholar 

Rota PA et al (2003) Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Sci 300(5624):1394

Google Scholar 

Peiris JSM et al (2003) Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet 361(9366):1319–1325

Google Scholar 

Zaki AM et al (2012) Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. New England J Med 367(19):1814–1820

Google Scholar 

Marra MA et al (2003) The genome sequence of the SARS associated coronavirus. Sci 300(5624):1399

Google Scholar 

Li W et al (2003) Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 426(6965):450–454

Google Scholar 

Guan Y et al (2003) Isolation and characterization of viruses related to the SARS coronavirus from animals in Southern hina. Sci 302(5643):276

Google Scholar 

Li W et al (2005) Bats are natural reservoirs of SARS-like coronaviruses. Sci 310(5748):676

Google Scholar 

Peiris JSM et al (2003) Clinical progression and viral load in a community outbreak of coronavirus-associated SARS pneumonia: a prospective study. Lancet 361(9371):1767–1772

Google Scholar 

van der Hoek L et al (2004) Identification of a new human coronavirus. Nature Med 10(4):368–373

Google Scholar 

Snijder EJ et al (2003) Unique and conserved features of genome and proteome of SARS coronavirus, an early split-off from the coronavirus group 2 lineage. J Mole Biol 331(5):991–1004

Google Scholar 

Poutanen SM et al (2003) Identification of severe acute respiratory syndrome in Canada. New England J Med 348(20):1995–2005

Google Scholar 

Lau SKP et al (2005) Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats. Proceed National Academy Sci United States Am 102(39):14040

Google Scholar 

Woo PCY et al (2005) Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia. J Virology 79(2):884

Google Scholar 

Assiri A et al (2013) Hospital outbreak of Middle East respiratory syndrome coronavirus. New England J Med 369(5):407–416

Google Scholar 

Chen Y et al (2013) Human infections with the emerging avian influenza A H7N9 virus from wet market poultry: clinical analysis and characterisation of viral genome. Lancet 381(9881):1916–1925

Google Scholar 

Kuiken T et al (2003) Newly discovered coronavirus as the primary cause of severe acute respiratory syndrome. Lancet 362(9380):263–270

Google Scholar 

Gaynor AM et al (2007) Identification of a novel polyomavirus from patients with acute respiratory tract infections. PLoS Pathogens 3(5)

Google Scholar 

Raj VS et al (2013) Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature 495(7440):251–254

Google Scholar 

Anand K et al (2003) Coronavirus main proteinase (3CLpro) structure: basis for design of anti-SARS drugs. Sci 300(5626):1763

Google Scholar 

Ruuskanen O et al (2011) Viral pneumonia. Lancet 377(9773):1264–1275

Google Scholar 

Nicholls JM et al (2003) Lung pathology of fatal severe acute respiratory syndrome. Lancet 361(9371):1773–1778

Google Scholar 

Allander T et al (2007) Human bocavirus and acute wheezing in children. Clinical Infect Diseases 44(7):904–910

Google Scholar 

Imai Y et al (2005) Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature 436(7047):112–116

Google Scholar 

Traggiai E et al (2004) An efficient method to make human monoclonal antibodies from memory B cells: potent neutralization of SARS coronavirus. Nature Med 10(8):871–875

Google Scholar 

Thiel V et al (2003) Mechanisms and enzymes involved in SARS coronavirus genome expression. J General Virology 84(9):2305–2315

Google Scholar 

Kuo-Chen C (2015) Impacts of bioinformatics to medicinal chemistry. Med Chem 11(3):218–234

Google Scholar 

Bosch BJ et al (2003) The coronavirus spike protein Is a class I virus fusion protein: structural and functional characterization of the fusion core complex. J Virology 77(16):8801

Google Scholar 

Assiri A et al (2013) Epidemiological, demographic, and clinical characteristics of 47 cases of Middle East respiratory syndrome coronavirus disease from Saudi Arabia: a descriptive study. Lancet Infect Diseases 13(9):752–761

Google Scholar 

Daffis S et al (2010) 2’-O methylation of the viral mRNA cap evades host restriction by IFIT family members. Nature 468(7322):452–456

Google Scholar 

Fraser C et al (2004) Factors that make an infectious disease outbreak controllable. Proceed Nat Academy Sci United States Am 101(16):6146

Google Scholar 

van Boheemen S et al (2012) Genomic characterization of a newly discovered coronavirus associated with acute respiratory distress syndrome in Humans. mBio 3(6):e00473–12

Google Scholar 

Cinatl J et al (2003) Glycyrrhizin, an active component of liquorice roots, and replication of SARS-associated coronavirus. Lancet 361(9374):2045–2046

Google Scholar 

Meyers LA et al (2005) Network theory and SARS: predicting outbreak diversity. J Theoret Biol 232(1):71–81

Google Scholar 

Reusken CBEM et al (2013) Middle East respiratory syndrome coronavirus neutralising serum antibodies in dromedary camels: a comparative serological study. Lancet Infect Diseases 13(10):859–866

Google Scholar 

Weinstein RA, Hota B (2004) Contamination, disinfection, and cross-colonization: are hospital surfaces reservoirs for nosocomial infection? Clinical Infect Diseases 39(8):1182–1189

Google Scholar 

Woo PCY et al, Discovery of seven novel mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alpha coronavirus and beta coronavirus and avian coronaviruses as the gene source of gamma coronavirus and deltacoronavirus

Google Scholar 

Comments (0)

No login
gif