Narrative review of metabolic syndrome and its relationships with non-alcoholic fatty liver disease, gonadal dysfunction and obstructive sleep apnea

Kylin E. Studies of the hypertension-hyperglycemia-hyperuricemia syndrome. Zentralbl Inn Med. 1923;44:105–27.

Google Scholar 

Reaven GM. Role of insulin resistance in human disease. Diabetes. 1988;37(12):1595–607.

PubMed  Google Scholar 

Kaplan NM. The deadly quartet: Upper-Body obesity, glucose intolerance, hypertriglyceridemia, and hypertension. Arch Intern Med. 1989;149(7):1514–20.

PubMed  Google Scholar 

Alberti G. Introduction to the metabolic syndrome. Eur Heart J Supplements. 2005;7(supplD):D3–5.

Google Scholar 

Reaven P. Metabolic syndrome. J Insur Med. 2004;36(2):132–42.

PubMed  Google Scholar 

Weiss R, Bremer AA, Lustig RH. What is metabolic syndrome, and why are children getting it? Ann N Y Acad Sci. 2013;1281(1):123–40.

PubMed  PubMed Central  Google Scholar 

Bovolini A, Garcia J, Andrade MA, Duarte JA. Metabolic syndrome pathophysiology and predisposing factors. Int J Sports Med. 2020;42(03):199–214.

PubMed  Google Scholar 

McCracken E, Monaghan M, Sreenivasan S. Pathophysiology of the metabolic syndrome. Clin Dermatol. 2018;36(1):14–20.

PubMed  Google Scholar 

Cho LW. Metabolic syndrome. Singap Med J. 2011;52(11):779–85.

Google Scholar 

Boudreau D, Malone D, Raebel M, Fishman P, Nichols G, Feldstein A, et al. Health care utilization and costs by metabolic syndrome risk factors. Metab Syndr Relat Disord. 2009;7(4):305–14.

PubMed  Google Scholar 

Organization WH. Definition, diagnosis and classification of diabetes mellitus and its complications: report of a WHO consultation. Part 1, diagnosis and classification of diabetes mellitus. World health organization; 1999.

Alberti KG, Zimmet PZ. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet Med. 1998;15(7):539–53.

PubMed  Google Scholar 

Balkau B, Charles MA. Comment on the provisional report from the WHO consultation. European group for the study of insulin resistance (EGIR). Diabet Med. 1999;16(5):442–3.

PubMed  Google Scholar 

Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP). Expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult treatment panel III). JAMA. 2001;285(19):2486–97.

Google Scholar 

Nilsson PM, Tuomilehto J, Rydén L. The metabolic syndrome–What is it and how should it be managed? Eur J Prev Cardiol. 2019;26(2suppl):33–46.

PubMed  Google Scholar 

Group IETFC. International diabetes federation: the IDF consensus worldwide definition of the metabolic syndrome. http://www.idf.org/webdata/docs/Metabolic_syndrome_def.pdf. 2005.

Alberti KG, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato KA, et al. Harmonizing the metabolic syndrome: a joint interim statement of the international diabetes federation task force on epidemiology and prevention; National heart, lung, and blood institute; American heart association; world heart federation; international atherosclerosis society; and international association for the study of obesity. Circulation. 2009;120(16):1640–5.

PubMed  Google Scholar 

Guo S. Insulin signaling, resistance, and the metabolic syndrome: insights from mouse models into disease mechanisms. J Endocrinol. 2014;220(2):T1–23.

PubMed  PubMed Central  Google Scholar 

Fahed G, Aoun L, Bou Zerdan M, Allam S, Bou Zerdan M, Bouferraa Y, et al. Metabolic syndrome: updates on pathophysiology and management in 2021. Int J Mol Sci. 2022;23(2):786.

PubMed  PubMed Central  Google Scholar 

Meshkani R, Adeli K. Hepatic insulin resistance, metabolic syndrome and cardiovascular disease. Clin Biochem. 2009;42(13):1331–46.

PubMed  Google Scholar 

Huang PL. A comprehensive definition for metabolic syndrome. Dis Models Mech. 2009;2(5–6):231–7.

Google Scholar 

Perry RJ, Samuel VT, Petersen KF, Shulman GI. The role of hepatic lipids in hepatic insulin resistance and type 2 diabetes. Nature. 2014;510(7503):84–91.

PubMed  PubMed Central  Google Scholar 

Stanhope KL, Havel PJ. Fructose consumption: potential mechanisms for its effects to increase visceral adiposity and induce dyslipidemia and insulin resistance. Curr Opin Lipidol. 2008;19(1):16–24.

PubMed  PubMed Central  Google Scholar 

Boden G. Obesity, insulin resistance and free fatty acids. Curr Opin Endocrinol Diabetes Obes. 2011;18(2):139–43.

PubMed  PubMed Central  Google Scholar 

Eckel RH, Grundy SM, Zimmet PZ. The metabolic syndrome. Lancet. 2005;365(9468):1415–28.

PubMed  Google Scholar 

Boden G, Cheung P, Stein TP, Kresge K, Mozzoli M. FFA cause hepatic insulin resistance by inhibiting insulin suppression of glycogenolysis. Am J Physiology-Endocrinology Metabolism. 2002;283(1):E12–9.

Google Scholar 

Boden G. Fatty acid—induced inflammation and insulin resistance in skeletal muscle and liver. Curr Diab Rep. 2006;6(3):177–81.

PubMed  Google Scholar 

Zhai W, Xu C, Ling Y, Liu S, Deng J, Qi Y, et al. Increased lipolysis in adipose tissues is associated with elevation of systemic free fatty acids and insulin resistance in perilipin null mice. Horm Metab Res. 2010;42(04):247–53.

PubMed  Google Scholar 

Roche HM, Phillips C, Gibney MJ. The metabolic syndrome: the crossroads of diet and genetics. Proceedings of the Nutrition Society. 2005;64(3):371-7.

Angelova P, Boyadjiev N. A review on the models of obesity and metabolic syndrome in rats. Trakia J Sci. 2013;11(1):5–12.

Google Scholar 

Lottenberg AM, Afonso MS, Lavrador MSF, Machado RM, Nakandakare ER. The role of dietary fatty acids in the pathology of metabolic syndrome. J Nutr Biochem. 2012;23(9):1027–40.

PubMed  Google Scholar 

White B. Dietary fatty acids. Am Fam Physician. 2009;80(4):345–50.

PubMed  Google Scholar 

Moussavi N, Gavino V, Receveur O. Could the quality of dietary fat, and not just its quantity, be related to risk of obesity?? Obesity. 2008;16(1):7–15.

PubMed  Google Scholar 

Fedor D, Kelley DS. Prevention of insulin resistance by n-3 polyunsaturated fatty acids. Curr Opin Clin Nutr Metabolic Care. 2009;12(2):138–46.

Google Scholar 

Buettner R, Parhofer K, Woenckhaus M, Wrede C, Kunz-Schughart LA, Scholmerich J, et al. Defining high-fat-diet rat models: metabolic and molecular effects of different fat types. J Mol Endocrinol. 2006;36(3):485–501.

PubMed  Google Scholar 

Saraswathi V, Kumar N, Gopal T, Bhatt S, Ai W, Ma C, et al. Lauric acid versus palmitic acid: effects on adipose tissue inflammation, insulin resistance, and Non-Alcoholic fatty liver disease in obesity. Biology. 2020;9(11):346.

PubMed  PubMed Central  Google Scholar 

Lin HV, Frassetto A, Kowalik EJ Jr, Nawrocki AR, Lu MM, Kosinski JR, et al. Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms. PLoS ONE. 2012;7(4):e35240.

PubMed  PubMed Central  Google Scholar 

Li Z, Yi C-X, Katiraei S, Kooijman S, Zhou E, Chung CK, et al. Butyrate reduces appetite and activates brown adipose tissue via the gut-brain neural circuit. Gut. 2018;67(7):1269–79.

PubMed  Google Scholar 

Gao Z, Yin J, Zhang J, Ward RE, Martin RJ, Lefevre M, et al. Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes. 2009;58(7):1509–17.

PubMed  PubMed Central  Google Scholar 

Henagan TM, Stefanska B, Fang Z, Navard AM, Ye J, Lenard NR, et al. Sodium butyrate epigenetically modulates high-fat diet-induced skeletal muscle mitochondrial adaptation, obesity and insulin resistance through nucleosome positioning. Br J Pharmacol. 2015;172(11):2782–98.

PubMed  PubMed Central  Google Scholar 

Aguilar E, Leonel A, Teixeira L, Silva A, Silva J, Pelaez J, et al. Butyrate impairs atherogenesis by reducing plaque inflammation and vulnerability and decreasing NFκB activation. Nutr Metabolism Cardiovasc Dis. 2014;24(6):606–13.

Google Scholar 

den Besten G, Bleeker A, Gerding A, van Eunen K, Havinga R, van Dijk TH, et al. Short-Chain fatty acids protect against High-Fat Diet–Induced obesity via a PPARγ-Dependent switch from lipogenesis to fat oxidation. Diabetes. 2015;64(7):2398–408.

Google Scholar 

Unger AL, Torres-Gonzalez M, Kraft J. Dairy fat consumption and the risk of metabolic syndrome: an examination of the saturated fatty acids in dairy. Nutrients. 2019;11(9):2200.

PubMed  PubMed Central  Google Scholar 

Palomer X, Pizarro-Delgado J, Barroso E, Vázquez-Carrera M. Palmitic and oleic acid: the Yin and Yang of fatty acids in type 2 diabetes mellitus. Trends Endocrinol Metabolism. 2018;29(3):178–90.

Google Scholar 

Yang M, Wei D, Mo C, Zhang J, Wang X, Han X, et al. Saturated fatty acid palmitate-induced insulin resistance is accompanied with myotube loss and the impaired expression of health benefit myokine genes in C2C12 myotubes. Lipids Health Dis. 2013;12(1):104.

PubMed  PubMed Central  Google Scholar 

Carta G, Murru E, Banni S, Manca C. Palmitic acid: physiological role, metabolism and nutritional implications. Front Physiol. 2017;8:902.

PubMed  PubMed Central  Google Scholar 

Lu Y, Cheng J, Chen L, Li C, Chen G, Gui L, et al. Endoplasmic reticulum stress involved in high-fat diet and palmitic acid-induced vascular damages and Fenofibrate intervention. Biochem Biophys Res Commun. 2015;458(1):1–7.

PubMed  Google Scholar 

Akter S, Akhter H, Chaudhury HS, Rahman MH, Gorski A, Hasan MN, et al. Dietary carbohydrates: pathogenesis and potential therapeutic targets to obesity-associated metabolic syndrome. BioFactors. 2022;48(5):1036–59.

PubMed  Google Scholar 

Griel

Comments (0)

No login
gif