Burden of Osteoporosis | International Osteoporosis Foundation [Internet]. [cited 2024 Oct 14]. Available from: https://www.osteoporosis.foundation/policy-makers/burden-osteoporosis
Shen Y, Huang X, Wu J, Lin X, Zhou X, Zhu Z, et al. The global burden of osteoporosis, low bone mass, and its related fracture in 204 countries and territories, 1990–2019. Front Endocrinol (Lausanne). 2022;13:882241.
Watts E by RA, Conaghan PG, Denton C, Foster H, Isaacs J, Müller-Ladner and U, editors. Oxford Textbook of Rheumatology. Fourth Edition, Fourth Edition. Oxford, New York: Oxford University Press; 2018.
Shen Y, Huang X, Wu J, Lin X, Zhou X, Zhu Z, et al. The Global Burden of Osteoporosis, Low Bone Mass, and Its Related Fracture in 204 Countries and Territories, 1990–2019. Front Endocrinol [Internet]. 2022 [cited 2024 Oct 14];13. Available from: https://www.frontiersin.org/journals/endocrinology/articles/10.3389/fendo.2022.882241/full
Zhu X, Bai W, Zheng H. Twelve years of GWAS discoveries for osteoporosis and related traits: advances, challenges and applications. Bone Res. 2021;9:1–19.
Caetano da Silva C, Edouard T, Fradin M, Aubert-Mucca M, Ricquebourg M, Raman R, et al. WNT11, a new gene associated with early onset osteoporosis, is required for osteoblastogenesis. Hum Mol Genet. 2022;31:1622–34.
Han L, Wu J, Wang M, Zhang Z, Hua D, Lei S, et al. RNA modification-related genetic variants in genomic loci associated with bone mineral density and fracture. Genes (Basel). 2022;13:1892.
Article CAS PubMed Google Scholar
Houschyar KS, Tapking C, Borrelli MR, Popp D, Duscher D, Maan ZN, et al. Wnt pathway in bone repair and regeneration – What Do We Know So Far. Front Cell Dev Biol. 2019;6:170.
Article PubMed PubMed Central Google Scholar
Turin CG, Joeng KS, Kallish S, Raper A, Asher S, Campeau PM, et al. Heterozygous variant in WNT1 gene in two brothers with early onset osteoporosis. Bone Rep. 2021;15:101118.
Article CAS PubMed PubMed Central Google Scholar
Delgado-Calle J, Roodman GD. Doubling Down on Wnt Signaling to Overcome Myeloma Bone Disease. J Bone Miner Res. 2023;38:812–3.
Aditya S, Rattan A. sclerostin inhibition: a novel target for the treatment of postmenopausal osteoporosis. J Midlife Health. 2021;12:267–75.
Niveria K, ZafarYab M, Biswas L, Mahtab A, Verma AK. Leveraging selective knockdown of sost gene by Polyethyleneimine–siRNA–Chitosan reduced gold nanoparticles to promote osteogenesis in MC3T3-E1 & MEF Cells. Nanomedicine. 2024;19:895–914.
Article CAS PubMed Google Scholar
Komori T. Whole aspect of Runx2 functions in skeletal development. Int J Mol Sci. 2022;23:5776.
Article CAS PubMed PubMed Central Google Scholar
Upadhyay V, Sharma S, Sethi A, Singh AK, Chowdhury S, Srivastava S, et al. Hakai, a novel Runx2 interacting protein, augments osteoblast differentiation by rescuing Runx2 from Smurf2-mediated proteasome degradation. J Cell Physiol. 2024;239:e31388.
Article CAS PubMed Google Scholar
Yang Z, Liu J, Fu J, Li S, Chai Z, Sun Y. Associations between WNT signaling pathway-related gene polymorphisms and risks of osteoporosis development in Chinese postmenopausal women: a case–control study. Climacteric. 2022;25:257–63.
Article CAS PubMed Google Scholar
Li J, Song M, Li S, Wang X, Zhao H, Hou Z. The relationship between LRP5 rs556442 and rs638051 polymorphisms and mutations and their influence on bone metabolism in postmenopausal Xinjiang women with type 2 diabetes. Adv Clin Exp Med. 2023;32:433–9.
Lu T, Forgetta V, Keller-Baruch J, Nethander M, Bennett D, Forest M, et al. Improved prediction of fracture risk leveraging a genome-wide polygenic risk score. Genome Med. 2021;13:16.
Article CAS PubMed PubMed Central Google Scholar
Johnson ML. LRP5 and bone mass regulation: Where are we now? Bonekey Rep. 2012;1:1.
Article PubMed PubMed Central Google Scholar
Goltzman D. LRP5, serotonin, and bone: Complexity, contradictions, and conundrums*. J Bone Miner Res. 2011;26:1997–2001.
Article CAS PubMed Google Scholar
Al-Amoodi MJH, Jones W, Lee D, McKenzie S, Miller HC, Zeller Z, et al. The association of polymorphism rs3736228 within the LRP5 gene with Bone Mineral Density in a Cohort of Caucasian Young Adults. GW Research Days 2016 - 2020 [Internet]. 2018; Available from: https://hsrc.himmelfarb.gwu.edu/gw_research_days/2018/SMHS/50
Xu G-Y, Qiu Y, Mao H-J. Common polymorphism in the LRP5 gene may increase the risk of bone fracture and osteoporosis. Biomed Res Int. 2014;2014:290531.
Article PubMed PubMed Central Google Scholar
Xuan M, Wang Y, Wang W, Yang J, Li Y, Zhang X. Association of LRP5 gene polymorphism with type 2 diabetes mellitus and osteoporosis in postmenopausal women. Int J Clin Exp Med. 2014;7:247–54.
PubMed PubMed Central Google Scholar
Funakoshi Y, Omori H, Yada H, Katoh T. Relationship between changes of bone mineral density over seven years and A1330V polymorphism of the low-density lipoprotein receptor-related protein 5 gene or lifestyle factors in Japanese female workers. Asia Pac J Clin Nutr. 2010;19:534–9.
Lu Y, Zhang S, Wang Y, Ren X, Han J. Molecular mechanisms and clinical manifestations of rare genetic disorders associated with type I collagen. Intractable Rare Dis Res. 2019;8:98–107.
Article PubMed PubMed Central Google Scholar
Augusciak-Duma A, Witecka J, Sieron AL, Janeczko M, Pietrzyk JJ, Ochman K, et al. Mutations in the COL1A1 and COL1A2 genes associated with osteogenesis imperfecta (OI) types I or III. Acta Biochim Pol. 2018;65:79–86.
Article CAS PubMed Google Scholar
Moradifard S, Hoseinbeyki M, Emam MM, Parchiniparchin F, Ebrahimi-Rad M. Association of the Sp1 binding site and -1997 promoter variations in COL1A1 with osteoporosis risk: The application of meta-analysis and bioinformatics approaches offers a new perspective for future research. Mutation Res - Rev Mutation Res. 2020;786:108339.
Ralston SH, Uitterlinden AG, Brandi ML, Balcells S, Langdahl BL, Lips P, et al. Large-scale evidence for the effect of the COLIA1 Sp1 polymorphism on osteoporosis outcomes: the GENOMOS study. PLoS Med. 2006;3:e90.
Article PubMed PubMed Central Google Scholar
Aitkulova A, Akilzhanova A, Abilova Z, Zhumatova Z, Akilzhanova G, Zholdybayeva E. Collagen Type I alpha1 (COL1A1) Gene Polymorphism and Bone Mineral Density in Postmenopausal Kazakh Women. Central Asian Journal of Global Health [Internet]. 2014 [cited 2025 Mar 17];3. Available from: https://cajgh.pitt.edu/ojs/cajgh/article/view/144
Banjabi AA, Al-Ghafari AB, Kumosani TA, Kannan K, Fallatah SM. Genetic influence of vitamin D receptor gene polymorphisms on osteoporosis risk. Int J Health Sci (Qassim). 2020;14:22–8.
PubMed PubMed Central Google Scholar
Marozik P, Rudenka A, Kobets K, Rudenka E. Vitamin D Status, Bone Mineral Density, and VDR Gene Polymorphism in a Cohort of Belarusian Postmenopausal Women. Nutrients. 2021;13:837.
Article CAS PubMed PubMed Central Google Scholar
Xiao X, Wu Q. The clinical utility of the BMD-related comprehensive genome-wide polygenic score in identifying individuals with a high risk of osteoporotic fractures. Osteoporos Int. 2023;34:681–92.
Article PubMed PubMed Central Google Scholar
Xiao X, Wu Q. Validation of a genome-wide polygenic score in improving fracture risk assessment beyond the FRAX tool in the Women’s Health Initiative study. PLoS ONE. 2023;18:e0286689.
Article CAS PubMed PubMed Central Google Scholar
Yalaev B, Tyurin A, Prokopenko I, Karunas A, Khusnutdinova E, Khusainova R. Using a polygenic score to predict the risk of developing primary osteoporosis. Int J Mol Sci. 2022;23:10021.
Article CAS PubMed PubMed Central Google Scholar
Lewis CM, Vassos E. Polygenic risk scores: from research tools to clinical instruments. Genome Med. 2020;12:44.
Article PubMed PubMed Central Google Scholar
Ho-Le TP, Tran TS, Nguyen HG, Center JR, Eisman JA, Nguyen TV. Genetic prediction of lifetime risk of fracture. J Clin Endocrinol Metab. 2023;108:e1403–12.
Article CAS PubMed Google Scholar
Ho-Le TP, Center JR, Eisman JA, Nguyen HT, Nguyen TV. Prediction of bone mineral density and fragility fracture by genetic profiling. J Bone Miner Res. 2017;32:285–93.
Comments (0)